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Identification of Terrestrial Reflectance from Remote Sensing

Rachel Alter-Gartenberg and Scott R. Nolf

Computer Sciences Corporation, 3217 N. Armistead Ave., Hampton, VA 23666.

Abstract

Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance

measurements. Model-based atmospheric correction techniques improve the accuracy of the identification

and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal

of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation

missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction

and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition,

identification and classification.

1 Introduction

One of the tasks of space-borne Earth observation systems is mapping and monitoring changes in terrestrial

reflectances. Future hyper-spectral remote-sensing imagery will record solar radiance reflected by the Earth

and scattered by the atmosphere, using up to 250 spectral channels from the near UV through the visible

to the short-wavelength IR (0.4 3.0¢m). The atmosphere attenuates the irradiance reflected from the

ground and creates a path scattered contribution in the received signal, which has little to do with the

underlying surface. Therefore, any meaningful identification and classification of terrestrial reflectances

from remote sensing imaging under varying atmospheric conditions requires a model-based atmospheric

radiative transfer correction technique, which accounts for the atmospheric attenuation and scattering.

This report presents a spatio-spectral sensitivity assessment of two atmospheric correction techniques

in the context of an end-to-end hyper-spectral reflectance recovery simulation. The sensitivity assessment

begins with 1-D deterministic assessments of spectral reflectance recovery and extends to stochastic assess-

ments of the recovery of 3-D spatio-spectral image cubes. The acquisition model includes deterministic

and stochastic presentations of randomly selected terrestrial reflectance image cubes, simulation of various



atmospheric conditions, the subsequent deterministic and stochastic simulations of the atmospheric effects,

and the simulation of the spectral filtering and spatial optical filtering for each spectral band. This report

uses the MODTRAN 3.7 software package as the atmospheric radiative transfer model [1], which is an

evolutionary development of LOWTRAN [2], to compute the irradiance at the surface, the transmittance,

and the beam and path radiance components, which comprise the measured total radiance at the observer's

location for a given surface.

This report further assesses the ability of the atmospheric-correction and reflectance-recovery tech-

niques to restore and identify the initial reflectance, and their sensitivity to uncertainty in the atmospheric

conditions. The reflectance-recovery techniques include Bowker's correction technique [3, 4] which is based

on a relatively simple modeling of the atmospheric effects, and the more recent Richter's correction tech-

nique [5, 6] which is based on a heuristic modeling of the same atmospheric effects. Following Slater's

formulation [7], the end-to-end modeling presented here extends previous work by Bowker et. al [3, 4] and

Huck et. al [8, 9] to include a more detailed and realistic simulation and evaluation of the atmospheric

effects. Ground reflectances are obtained from a data-base of reflectance signatures [4]. The results assess

the correct identification and classification of 27 pre-selected terrestrial reflectances from their measured

radiance. Finally, the report assesses the robustness and sensitivity of each technique to uncertainties

related to the acquisition conditions.

2 Remote-Sensing Imagery

A general model-based expression for the acquisition process of a hyper-spectral cube typically considers

the following components: the spectral distribution on the irradiance on the target surface E(A), the

atmospheric transmittance T(A), the spectral reflectance of the target p(x, y, A) at an (x, y) spatial location,

the spectral sensor response of each channel (I)_(A) which defines the spectral center wavelength A_, and the

spatial response of the optics r_(x, y; A_) at each center wavelength A_, as given by

The image-cube Lm(x, y, A_) is the radiance measurement of the average surface reflectance at the center

wavelength of the ith channel at the spatial location (x, y), and • denotes spatial convolution of the

measured radiance with the optical response r_(x, y; A_) for the ith spectral channel. The hyper-spectral

model recognizes two separate noise sources, the spectral sensor noise r%i associated with the sensor for

the ith spectral channel, and the spatial electronic noise n_(x, y; A_) associated with the optical image at
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Figure 1: Exoatmospheric solar irradiance flux/3_(A) for a solar zenith angle of 0° and d = 1.

the ith spectral band. The following sub-sections model the various components that define the measured

radiance L(x, y, ,_) in the context of remote-sensing imagery.

2.1 Irradiance

The exoatmospheric solar irradiance (solar irradiance outside the atmosphere) E,(A), illustrated in Fig. 1,

is attenuated by the atmosphere on its path to the Earth's surface. The global solar flux (irradiance) on

the surface is the sum of the direct (non-scattered) and diffuse (sky) irradiances,

F(A) = Fd(A)+ G(A). (2)

The direct irradiance for a solar zenith angle of 0z is given by [7]

Fd(A,Td;Oz,d) = F_(A)cos(O_)Td(A;O_), (3)
d2

where d is the ratio of the Sun-Earth distance at a given date to its mean value, and Td(_) is the direct

Sun-to-surface atmospheric transmittance, given as a function of the atmospheric optical depth r(A) by

Td(A,_;o_)= exp( cos(O_)} (4)
T(,_)



The indirect (diffuse) irradiance component Ev(k), often called the "sky" irradiance, also contributes to the

total irradiance at the surface. Diffuse irradiance is caused by multiple scattering of photons on their way

through the atmosphere (Rayleigh and aerosol scattering) and additional multiple scattering of photons

that are first reflected from the Earth's surface and subsequently re-scattered downward to the surface by

molecules and aerosols in the atmosphere.

The optical depth r(k) is a linear combination of the aerosol optical depth (turbidity) ra(k; V) and the

molecular (Rayleigh) optical depth rm(k)[10]

v) =  o(A;v) + (s)

where V, the atmospheric visual range, varies with the aerosol density in the boundary layer. Therefore,

the atmospheric visual range V, for a given aerosol density r_, is an alternative measure to r(A), when

most of the aerosol lies in the surface boundary layer of 0 to 2kin. Visual ranges considered in this report

are between V = 5kin (hazy condition) and V = 50kin (very clear condition) in a rural atmosphere. The

relationship between the visual range and the aerosol optical depth (turbidity) r_(A) can be obtained from

the nearly linear relationship between In(V) and ln(r_). The slope of this linear relationship is given by

5'(A) = ln{T_(A;V = 23)} - ln{ra(A;V = 5)} (6)
ln(23)- ln(5)

and the corresponding aerosol optical depth T_(A; V) for a given visual range V, is given by

 o(A;v) =  o(A;v = 5) . (7)

Although visual range and visibility are not equivalent [1], this report terms visual range as visibility.

Bearing in mind that a clear visibility at the surface does not account for a potential thick layer of aerosol

higher in the atmosphere, our modular and robust simulation can incorporate aerosol layers anywhere in

the atmosphere.

Figure 2 illustrates the total, direct and diffuse components of the irradiance at the Earth for surface

reflectances of 0.1, 0.4, and 0.7 respectively, for a solar zenith angle of 0z = 30 °, and for visibilities of

V = 23kin and 5kin respectively. The irradiance is calculated for the 93rd day of the year (April 3), when

the Earth is at its mean distance from the Sun (d = 1). The attenuation of the irradiance from about

230 mW cm -2 #m -1 at A = 0.5#m (Fig. 1) to about 170 mW cm -2 #m -1 for V = 23kin (Fig. 2 top)

and 140 mW cm -2 #m -1 for V = 5kin (Fig. 2 bottom) is due to molecular and aerosol attenuation and

scattering. The direct irradiance for the lower visibility conditions decreases, while the diffuse component

increases considerably, relative to these components for the higher visibility condition. Fig. 2 also shows
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Figure 2: Total, direct and diffuse components of the solar irradiance, E(A), Ed(A) and Ep(A), for 0_ = 30 °

and a surface reflectance of (a) p(A) = 0.1, (b) p(A) = 0.4, and (c) p(A) = 0.7.



Species Band (#rn)

02

H20

02

H20 in lower atmosphere

0.688

0.721

0.762 0.767

0.919

02

H20

H20

02 and a C02

H20

C02 and H20

H20

C02 and H20

0.933 0.978

1.114 1.157

1.179

1.322 1.503

1.794 2.003

2.072

2.402 2.7

2.7 3.0

Table 1: Significant molecular absorption bands in the spectral region of 0.4 3.0#m

that the direct irradiance on a clear day (e.g., visibility of V = 23km) exceeds the diffuse irradiance at

all wavelengths A > 0.45#rn, whereas on a hazy day (e.g., visibility of V = 5km), the diffuse irradiance

exceeds the direct irradiance at all wavelengths A < 0.7#rn, regardless of the magnitude of the surface

reflectance. The sensitivity of the irradiance components to the original reflectance p(A) is minimal.

Regions of significant molecular absorption are evident from the dips in the total solar irradiance curves,

and are summarized in Table 1.

2.2 Radiance

Assuming Lambertian reflectance p(A), the surface radiance, as measured on the ground, is given by

L,(A)=  -IF(A)p(A) (8)

where E(A) is the surface global irradiance given by Eq. 2. When viewed by a remote sensor, the total

measured radiance LT(A) is the sum of the beam and path radiances Lb(A) and Lp(A),

LT(A) = Lb(A) + Lv(A ). (9)



The beamradianceis madeup of photonsthat arereflectedfrom thesurfaceand transmitteddirectly to

the remotesensorwithout further scatteringin that direction,

Lb(A) = L (A)Tb(A) (10)

=

where Tb(A), the surface-to-sensor atmospheric transmittance, is given by Eq. 4 when the zenith angle is

replaced with the nadir-viewing angle. The path radiance Lp(A) consists of photons that are either back-

scattered off the atmosphere, emitted by the atmosphere, or surface-reflected and subsequently scattered

by the atmosphere on their way to the sensor. All path-radiance photons constitute a noise source, which

interferes with the inference of the actual surface reflectance p(A). For the range of wavelengths considered

in this study, the fraction of photons emitted by the atmosphere as thermal energy is negligible, whereas

the back-scattered and path-scattered photons are significant, especially at the shorter wavelengths. As a

result, the path radiance Lp(A) is given by

L,(A)= Lo(A)+ (11)

= Lo(A)+

where Lo(A) is the radiance of a zero-reflectance (black body) target viewed through the atmosphere, and

Tp(A) is the diffuse transmittance. The zero-reflectance radiance Lo(A) consists solely of photons that are

back-scattered off the atmosphere, independent of the reflectance of the underlying surface. Therefore, its

magnitude depends only on the solar zenith angle, the aerosol density and the sensor viewing geometry.

Figure 3 illustrates the path and beam radiance components for surface reflectance of p(A) ---- 0.1,

0.4, and 0.7, with visibilities of 23kin (top) and 5kin visibility (bottom). In general, information about

the surface is contained mainly in the beam radiance, while the path radiance consists mostly of light

scattered into the path from the atmosphere and from the surrounding reflectances. Both the beam

and the path radiances increase with increasing surface reflectance, where the path radiance contribution

decreases with increasing wavelength due to diminished scattering at longer wavelengths. The relative

contributions of beam and path radiance components however, vary significantly with changes in the

visibility conditions. The wavelength beyond which the magnitude of the beam component exceeds that

of the path component decreases with increasing surface reflectance, due to the higher fraction of beam

radiance at longer wavelengths. For the 23kin-visibility case, the cross-over wavelengths are 0.6, 0.47, and

0.43 #m, for p(A) ----0.1, 0.4, and 0.7 respectively. For the 5kin-visibility case, the respective cross-over

wavelengths shift to 1.1, 0.87, and 0.82 #m, respectively, demonstrating the more dominant role of path
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radiancein low-visibility conditions.For example,for the 5kin visibility case,the path radianceexceeds

the beamradianceat all wavelengthsin the visibleregion.

2.3 Adjacency Effects

Theabove1-Dspectralmodeldoesnot accountfor the effectsof radiancecontributionsfrom surrounding

pixels(adjacencyeffects[11]). The MODTRAN packagecomputeseachof the model's1-Dcomponents
independentof the surroundingspatialcontributions,whereasradiancecontributionsfrom surrounding

pixelsaresimilar to the effectsof spatialoptical blurring [11]. Kaufman'sempiricalapproximationof

the adjacencyeffectsfor a squaretargetof edge-length1 with a uniform reflectance py, surrounded by a

uniform background reflectance Pb, as a function of the molecular (Rayleigh) and aerosol optical thickness

TIn(A) and Ta(A) respectively, and the molecular and aerosol average heights Hm and Ha respectively, is

given by the fraction weight function _(1, A) [11]

(z) (z) (t,A)=0Y  (t,A)exp +037 a(t,A) exp +032 a(t,A) exp

The weight _(1, A) indicates the transfer fraction of the surrounding radiance fields in the measured radiance,

and therefore models the measured radiance as a linear combination of the target and its adjacent fields,

as given by

L(t, A) = L(pb)_(t, A) + L(pf)[1 - _(t, A)]. (13)

The molecular optical thickness Tm(A) is not affected by the visual range V, and can be obtained by

Tm (A) ---- -- In (T,_ (A)), where T,_ (A) is the molecular transmittance of the atmosphere between the observer

and sea level. Similarly, the aerosol transmittance, a part of the direct surface-to-sensor path atmospheric

transmittance (Eq. 11) for a a given visibility condition V, can be extracted using Eq. 4 for the nadir-

viewing angle, as 7-a(/_; V) = -ln(Ta(/\; V)), or by using Eq. 7.

Fig. 4 illustrates the 1 - A plane of _(1, A) for V = 10kin, assuming H,_ = 8kin, and Ha = 2kin as the

average height of the molecular and aerosol boundary layers respectively, while Fig. 5 illustrates 1-D spatial

projections of the fraction weight function _. These figures show that the fraction of scattered radiance

from background reflectances decreases with increasing edge-field length 1 and with increasing wavelength

A. As expected, Fig. 5(b) also shows that the fraction of scattered radiance increases with decreased

visibility. However, these figures reveal unrealistically high contributions from background scattering. For

example, according to this formulation, for A ---- 0.4pro and V ---- 23kin, 20_ of the measured radiance of

the target field with an edge-field length of 10kin comes from the surrounding areas. This contribution

11
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increases to 35% for low visibility of 5kin. Slater ([7], pp. 220) indicates that reflectances within 100

meters of the borders are affected by the adjacency effects under normal turbidity conditions. Even under

zero-turbidity conditions, reflectances within ten meters of the borders are affected, and only under highly

turbid conditions does this effect extends to one kilometer from the target's boundary. Therefore, while

the trend of the proposed (-function is correct, it requires spatial re-scaling to achieve a more realistic

contributions radius.

Kaufman's model is restricted to a two-reflectance model, i.e., the target and its surround. It does

not account for scattering from multiple surrounding reflectances. To overcome this limitation, L(p/) and

L(pb) can be replaced with a spatio-spectral cube, and the weighting fraction function ( can be replaced by

a convolution with an equivalent spatio-spectral blurring filter cube with the path radiance spatio-spectral

cube Lp(x, y, ,_).

To extend this empirical approximation to the _' - A plane, the field-edge 1 is replaced with the scaled

Euclidean distance d, = six - x0] between the spatial location x0 and all the scattering locations x,

-cx_ < _' < cx_, where s > 1 is a spatial scale factor. For every spectral band A, the extended adjacency

13



effectsmodelis thereforegivenby

f L(x; A)
L(xo; ),) = _,_¢_o

x

(14)

where the normalization factor ensures that the weight of the scattered radiance remains a probability

function. Consequently, Eq. 14 can be re-written as a spatial convolution between the path radiance

Lp(x,A ) and the kernel Z(x,A), given in terms of d_ as

¢(d_,_)

) for d# 0

X(d_, A) = __o _(d_,_)

1 ' f¢(d_;a) d= 0
d

(15)

The resulting total measured radiance, after accounting for the adjacency effects, is therefore given by

LT(X, )_)= Lb + Lv(x, )_) * Z(d,, )_). (16)

To account for fluctuations in the amount of scattered radiance, Eq. 16 can be replaced with

LT(x,A)= Lb+ (L,(x, A)[I+ (x,A)])• z(<, A), (17)

where nLp is a uniform random white noise in the [-a, a] range, a < 1. Typical fluctuations are between

a = 0.05 and 0.1, indicating fluctuations of 5% 10% around the path radiance. Fig. 6 illustrates the

fraction kernel Z(d, A) for visibility of 10km and for x _> 0 and a spatial scale factor of s = 1. As expected,

a comparison of this figure with Fig. 4 shows the same general response. Eq. 15 can be easily extended to

2-D spatial coordinates, thus obtaining the desired spatio-spectral blurring effect.

Fig. 7 illustrates the measured radiance of a spatio-spectral target of only three discrete reflectances,

p(A) = 0.4, 0.1, and 0.7, each spread over 80 processing pixels for 0z = 30 °, V = 5, 10 and 15 km, and s = 2

and s = 3. It assesses the difference between a model that ignores the adjacency effects (Eq. 9), drawn in

gray, and the measured radiance which accounts for these effects (Eq. 13), drawn in black. It shows that

the adjacency effects blur the transitions between reflectances. A comparison between Fig. 7(a) and (b)

illustrates the spread factor control on the amount of blur. The spatial spread of the blur reduces from 20

pixels on each size of the edge for a spatial scale factor of s = 2 in Fig. 7(a), to 10 pixels on each size of the

edge for a spread scale factor of s = 3 in Fig. 7(b). Assuming as an example remote sensing images with

a resolution of 100m, this spread translates to 2km on each side of the edge for a spread scaler of s = 2,

14
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and lkm for a spreadscalerof s = 3. As expected,the amountof blur is controlledby thevisibility. Both

figuresshowthat the lowerthe visibility, the higherthe contributionfrom the adjacencyeffects.Fig. 7(c)

illustratesa cut throughthe measuredradiancefor V = 10km and 0z = 0° at different wavelengths for a

scale factor of s = 2. This figure shows that adjacency blurring effects diminish with increased A, as the

wavelength shifts from the visible into the IR.

2.4 Apparent Reflectance

The apparent reflectance (albedo), as defined by

7_d2

pa(A)= F cos(ez)cos(e )Lr(A), (18)

is often used to estimate the reflectance from the measured radiance LT(._). Figure 8 illustrates the

albedo dependency on surface reflectance and visibility condition, as viewed from a satellite, based on the

acquisition conditions used in Fig. 2. This figure also compares the effects of stratospheric aerosol density,

by simulating a case with a normal level of stratospheric aerosol (top), and the conditions following a

volcanic eruption (bottom), to assess the sensitivity of the visibility parameter to layers of aerosol higher

in the atmosphere. This figure shows that for rural aerosols, the albedo for low reflectance equals or

exceeds the reflectance value at all wavelengths, except within the absorption band regions, and is lower

for reflectances that are higher than 0.21, as illustrated in Figs. 8(b) and (c). For p(A) ----0.1, the albedo in

the visible band 0.4-0.8#m increases as visibility decreases because the path radiance, which increases with

decreased visibility, is dominant for low-reflectance conditions, as illustrated in Fig. 8(a). This phenomenon

does not hold for A > 1pro, where scattering is negligible, and the albedo is independent of turbidity, or

for higher reflectances, as illustrated in Figs. 8(b) and (c), where the beam radiance is dominant and the

albedo increases with increased visibility. Changes in the albedo between the top and bottom figures can

be attributed to increased attenuation in the beam radiance described above, while the increase in the

troughs is caused by increased back-scattering off the stratospheric aerosol.

Figure 9 illustrates the effects of the atmosphere on the albedo as a function of the sensor's altitude,

for visibilities ranging from V ----5km to 23km, using the same simulation conditions as in Fig. 8. The

figure covers the 0.4 0.8pro region to highlight important differences in the visible and near-IR regions

of the spectrum. It demonstrates that the albedo is most sensitive to atmospheric degradation at the

shortest wavelengths, due to increased scattering. For V ---- 23km the albedo is relatively unperturbed

at wavelengths beyond 0.7, 0.57, and 0.5pro, for p ----0.1, 0.4, and 0.7 respectively. This figure shows a

significant increase in albedo as altitude increases and the reflectance decreases. For very low reflectances,
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Figure 8: Apparent reflectance (albedo) p,(A) for a surface reflectance of (a) p(A) = 0.1, (b) p(A) = 0.4,

and (c) p(A) = 0.7, with visibilities of V = 50, 23, 10 and 5kin in the surface boundary layer and with a

normal background loading of aerosol higher in the atmosphere (top), and a thick layer of volcanic aerosol

higher in the atmosphere (bottom), solar zenith angle of 0_ = 30 °, and a satellite altitude of H = 800kin.
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illustrated in Fig. 9(a), the albedo exceeds the true reflectance because of increased optical depth, which, in

turn, increases the path radiance. With just a normal background aerosol loading higher in the atmosphere

("normal" case), this increase is negligible above 30km. Comparison of this "normal" case with that of

a thick layer of volcanic aerosol shows that the albedo in the latter case is smoother than in the former.

For both top and bottom sets of figures, a comparison between the albedo at V = 23 and 5km for a range

between 0.57 and 0.7#m reveals an abrupt albedo decrease at the 30km altitude to levels that are below the

5km altitude for higher reflectances. This phenomenon is caused by the stratospheric ozone layer, which

has some absorption at these wavelengths, and thus decreases the beam radiance, particularly for high

reflectances. Figs. 8 and 9 clearly demonstrate the limitations of the albedo approximation, and the need

to account for atmospheric degradations before the reflectance identification and classification processes

take place.

3 Simulation

3.1 Radiometry and Sensors

Substituting Eqs. 10 and 11 into Eq. 9 yields

LT(A) = Lo(A) + _-'E(A)p(A) [Tb(A)+ Tp(A)]

= Lo(A) +

(19)

where

Fr(A) =

is defined as the "effective irradiance", and

(20)

(21)

is the corresponding total transmittance. With the definition of the "effective irradiance" ET(A), the

measured surface radiance from remote sensing LT (Eq. 19) parallels the measured surface L, radiance

right at the ground (Eq. 8), where the irradiance /3 is replaced with the effective irradiance ET, and Lo

constitutes a pure scattering noise term. Fig. 10 illustrates the direct (path), diffuse and total transmittance

components for 0z = 30 °, V = 5 and 23km, and p(A) = 0.1, 0.4, and 0.7, respectively. This figure shows that

the total transmittance decreases with decreasing visibility. Specifically, it shows that the path component

decreases while the diffuse component increases with decreasing visibility. It also shows that the effects of
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21



the diffuse transmittance diminishes at longer wavelengths. These observations help explain the decrease

in the adjacency blurring effect for longer wavelengths and the blur increase with decreased visibility.

Substituting Eq. 19 into Eq. 1 yields the remote-sensing measured radiance for the ith channel,

(22)

The radiance-to-digital conversion for the ith channel is given by

Lm_(x, Y, A_) = Lm(x, Y, A_) [Co(/) + q(0D], (23)

where A_ is the center wavelength of the ith channel, D is the digital number, and co(i) and c_ (i) are the

offset and slope of the calibration coefficients respectively. The permissible wavelength regions to be used

in Eqs. 22 and 23 exclude the natural absorption bands summarized in Table 1. Avoiding the absorption

bands minimizes the errors arising from the wide variation in the atmospheric water-vapor content.

3.2 Assumptions

The parameters used to simulate the atmospheric acquisition conditions are:

• 93rd day of the year (April 3)

• 1976 Standard Atmosphere

• Nadir view angle of 0%

• Sensor altitude of 800km.

• Solar zenith angles of 0 °, 30 °, and 45%

• Surface visibility 5, 10, 15, and 23km, in rural aerosol.

• Surface terrain angle of 0%

To assess the correction techniques, the simulation assumes non-overlapping spectral filters ¢F_(A), one

for each spectral frequency assessed in our simulation, i.e., ¢F_(A) = 0 for the A bands specified in Table 1,

and ¢F(A_) = a(A_) for all the remaining spectral frequencies within the 0.4 3.0pro range. The simulation

also assumes no radiance-to-digital errors, i.e., L,_ (k) = L,_ (k). The simulation uses the (x, y) dependency

to allow a stochastic treatment of the spatial representation of the different reflectances, with uncertainty
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Figure 11: The simulation of Eq. 22.

around a mean value for each A. Without a priori knowledge of the initial reflectance, the recovery

techniques assume a constant initial reflectance of p(A) ----0.4 for the simulation of/_(A), and Tp(A).

The simulations use targets with large mean spatial details relative to the processing (pixel) size. The

discrete (x, y) locations are at the pixels' centers, and the sampling lattice is identical to the processing

lattice. The spectral frequency u is defined with a Au interval of 0.0083 cm -1, which, in turn, defines the

wavelength vector A_ as A ----1/u for the (0.4 3.0pro) range. Therefore, the numerical implementation

of this simulation is dense enough in both the spatial and the spectral domains, and the signals are

bandlimited to the processing passband in the spatio-spectral domains. We assume an acquisition device

with a spatial-frequency response given by

(24)= exp{ 7 TA7 '

where cru(k_ ) is the optical-response index and (v, cc)are given in cycles/pixel.

Figure 11 illustrates the the effects of different components in Eq. 22 on the measured radiance, using

the same 240-pixels reflectance target used in Fig. 7, namely, an x-A spatio-spectral target of three constant

reflectances, p(A) = 0.4, 0.1, and 0.7, each spread over 80 processing pixels. Fig. 11(a) illustrates the effects

of 10% fluctuations in the reflectance signature. Fig. 11(b) illustrates the effects of this uncertainty on the

measured surface radiance L,, assuming V = 10km, 0z = 30 °, and a 5% uncertainty in the atmospheric
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Figure12: A randomreflectancetest target

conditions,simulatedwith 5% perturbationsaroundthe total irradiance/3. Fig. ll(c) illustrates the

remote-sensing measured radiance of the surface radiance measured in (b), with spatial path-radiance

fluctuations nLp of 10%, and adjacency effects with a spatial scale factor of s = 3. Fig. 11(d) illustrates

the addition of 5% sensor noise n+i to the total measured radiance. This figure demonstrates the ability

of the proposed model to simulate stochastic radiance measurement in the spatio-spectral domain.

3.3 The Spatio-Spectral Target

Figure 12 illustrates a 256-by-256 pixel random-polygon test target with a mean spatial detail of 40 pixels.

The reflectance for each polygon is randomly selected from the set of 25 reflectance signatures listed in

Table 2, where each reflectance signature response is taken from [4], and assigned a unique gray-level. The

stochastic process randomly selected 14 reflectance signatures from the database, and assigned them into

the randomly divided polygon areas. Subsequently, Fig. 12 visualizes a hyper-spectral random data-cube,

where each of the 14 gray levels represents a unique spectral signature associated with the spatial (x, y)

location. This figure is a more realistic representation of a natural target, as imaged by a remote sensing

system, than the typical square uniform target with uniform background, and will be used to assess the

ability to identify and classify the correct reflectance signature after implementing each of the correction

techniques. Fig. 13 superimposes the boundaries of the spectral reflectance cube on the original target,

identifies the spatial location of each of the 14 selected reflectance signatures, and associates the assigned

gray-level with the size (in pixels) of each selected reflectance signature. Together, these figures serve as
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Vegetation Soil
Crops Forests Identified Samples

Barley

Beans

Oats

Potatoes

Soybeans

Tobacco

Wheat

Fallow field

American Elm

Silver Maple

Burr Oak

Ponderosa Pine

Sycamore

Kentucky Blue Grass

Basalt

Dry red clay

Wet red clay

Gypsum sand

Silicon sand

Multi-mineral

Whitley County

Powell Grassland

Dry sand

Wet sand

Water

Water

Table 2: Reflectance signatures for the three different categories studied in this report

Reflectance color map

Figure 13: A random reflectance test target, where each major reflectance area is identified and marked,

the corresponding "color" map, and the number of pixels of each reflectance in the target.
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the benchmarkto quantifytheeffectivenessof eachrecoverytechnique.

4 Atmospheric Correction Techniques

The approximated albedo fia(+_) as extracted from the measured radiance L,_(+_) by the remote sensing

system, is commonly derived from Eqs. 8, 18 and 22 as

red2

_o(A)= F_(A)cos(Oz)cos(O_)Lm(A), (2S)

where _ indicates estimated terms. While the albedo p,(k) is a useful measure for several applications, it

does not account for the perturbations imposed by the transmittance components, Td(k), Tb(k) and Tp(k)

and the path radiance Lv(A ). Therefore, it differs from the surface reflectance p(A), as illustrated in Figs. 8

and 9.

Figure 14(a) illustrates the albedo estimate of the deterministic and stochastic measured radiance signal

illustrated in Fig. 11. The dotted line indicates the original reflectance at A = 0.5#m, the solid gray line

is the albedo estimate from the deterministic measured radiance (no added noise or uncertainties) after

the addition of the adjacency blurring effects with a spatial scale factor of s = 3, and the solid black line

indicates the albedo estimate from the stochastic measured radiance illustrated in Fig. 11(d). As expected,

this figure shows that the albedo estimate is too high for low reflectances and too low for high reflectances.

4.1 Bowker Reflectance Recovery Technique

Bowker's atmospheric correction technique [3] uses Eqs. 9 and 10 to estimate the surface reflectance p(+_)

from the radiance L,_(A) measured by a remote sensing system. By subtracting the path radiance from

the measured radiance (Eq. 9), and substituting Eq. 10 for the result, the estimated reflectance is given by

7F

fi(A)- /_(A)Tb(A)[Lm(A)- Lp(A)] (26)

where Tb(A) is the surface-to-sensor direct atmospheric transmittance. When the original reflectance is

unknown, Lp(A) is estimated from a constant reflectance of p(A) = 0.4. Since Lp(A) depends directly on

p(A), the differencebetween _,(A) and L,(A) poses an accuracy problem.

Similar to Fig. 14(a), Fig. 14(b) illustrates the performance of Bowker's reflectance estimate of the

deterministic and stochastic total radiance signal. This figure shows that Bowker's estimate is very accurate
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Figure 14: The correction techniques.

when Lp(A) = /_p(A), as indicated from the recovery of the p = 0.4 segment. However, this technique is

extremely inaccurate when Lp(A) differs from Lp(A) as indicated from the recoveries of p = 0.1 and 0.7 to

the physically unreasonable reflectance values of-0.2 and 1.03 respectively.

4.2 Richter Reflectance Recovery Technique

Richter's technique, developed for fast atmospheric correction of Landsat Thematic Mapper (TM) images,

can be divided into a spectral correction that accounts for the effective irradiance ET (Eq. 20), followed

by a spatial correction that accounts for the adjacency blurring effects. The spectral reflectance correction

is derived from the measured radiance, using Eqs. 19 and 22 [5, 6]

/_(A) [Tb(A) + Tp(A)] [Lm(A) - Lo(/_)] (27)

7C

= [Lm(a) - Lo(a)]
7r

- t?r(a) [Lm(a) - Lo(a)],

where/)(A) and T,p(A) are the estimated values of the total irradiance and diffuse atmospheric transmittance

respectively, for a constant reflectance of p(A) = 0.4, and L,_(A) is the measured digital radiance given
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Figure 15: Richter's spatial correction.

by Eq. 22. Accurate corrections depend on an accurate knowledge of the solar zenith angle (within 5

degrees) and a relatively accurate estimation of the atmospheric conditions, including the haze type and

visibility. In contrast to Bowker's technique, Richter's spectral correction subtracts Lo(A), which is a pure

atmospheric noise term, instead of subtracting Lp(A), which depends on p(A). Therefore, this technique is

self-correcting and less susceptible to inaccuracies when the underlying surface reflectance is unknown.

Figure 14(c) assesses Richter's spectral reflectance correction estimate. In contrast to Bowker's correc-

tion technique, Richter's spectral correction is very accurate throughout the whole reflectance range, and

is not sensitive to the assumption of a constant reflectance of p = 0.4. However, it does not correct for the

adjacency blurring effects, because it assumes a constant average surface reflectance value for the viewed

area. Therefore, it is a very good approximation for a small uniform area of square kilometers, but does

not account for the effects of radiance scattered from surrounding pixels of different reflectance signatures.

The spectral approximation is updated by the spatial correction given by

where

= + q [9)(a) - (28)
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is the ratio between the diffuse and path transmittance at the (x, 9) spatial location, and

1 _[_(')(z+i-w/2,9+j-w/2, A),19(')(x,v, a;w) =
i=1 j=l

is the spatial summation (average) of w-by-w neighboring spectral reflectance estimates. Neither the spec-

tral nor the spatial corrections account for random noise. The underlying assumption of the spatial correc-

tion technique is that the center/surround numerical differentiation operation in Eq. 28, [/5(1) (+_) -/9 (1) (+_)],

enhances only the adjacency blurring affects. However, in the presence of noise, and away from the edge,

this operation differentiates, and therefore enhances, pure random fluctuations (noise). Therefore, the

spatial correction, which is designed as a deblurring operator for a noiseless signal, has the potential of

boosting the noisy elements at spatial locations away from the edge.

Figure 15 evaluates the spatial recovery as a function of w for a deterministic simulation with different

visibility conditions and a constant solar zenith of 0z = 30 °. The solid gray line illustrates Richter's

spectral recovery for the +_= 0.5#m band, and is compared to Richter's spatial correction as a function of

w, illustrated in black patterned lines. Optimal widths w for this deterministic case are 5, 9, 11, and 13

pixels for visibilities of 5, 10, 15, and 23kin respectively. This figure shows that selecting a w that is too

narrow does not deblur the recovered reflectance estimate near the edge. However, a w that is too wide

enhances the edge by creating Mach-bands around it, similar to the non-linear Retinex filter with a wide

surround [12, 13]. This phenomenon perceptually sharpens the overall spatial signal at each spectral band,

at the cost of correct identification at the target's edges.

Figure 14(d) assesses the effects of Richter's spatial reflectance correction estimate with w = 9, relative

to its spectral correction illustrated in Fig. 14(c). This figure shows that Richter's spatial correction

deblurres the adjacency blurring effect, as demonstrated by the sharp and accurate edge transition for both

the deterministic and stochastic signals. The deterministic estimate differs from the original reflectance

by only 1%, and therefore exhibits a very accurate recovery. However, as predicted, this technique boosts

the local random fluctuation away from the edge. To minimize the effect of random fluctuations, and

enhance the measurement of the spatial blurring defects, the above difference operation can be replaced

by a difference between two smoothed signals, each with a different width w. The first, a smoothing filter

by a relatively small w, will minimize the local random fluctuations. The second filter, performed on the

already smoothed signal, will use a wider w to capture the adjacency blurring degradations and correct for

them.
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4.3 Assessment Tools

The spectralaccuracyof eachrecoverytechniqueat eachpixel (x, y) is defined by the root-mean-square

error (rinse) metric, applied to the relative difference between the original and the recovered reflectances,

p(x, y, A) and fi(x, y, A), over the set of permissible spectral wavelengths {A_},

c(x,y;/5)= p(A_)-/5(x, y,AO 2 (29)

respectively, where {o}{xj denotes the statistical mean over the {A_} set. Similarly, the global recovery

accuracy for each spectral signature area p(x, Y, A) is defined by the relative rinse between the original

p(A) and the averaged recovered reflectances p(A), across the set of pixels {(x, Y)p} that belongs to that

reflectance area,

c(/5)= {_(x,y;/5)}{(=,m) (30)

Accordingly, the identification process seeks the spectral signature that is closest, in the rmse sense, to

the recovered signature. Hence, if {pj(k)} represents the set of possible signatures, and {ej} denotes the

set of rinse's between /5(k) and each of the spectral signatures pj(k), as given by

_j(x,y;/5)= pj(a_)- _(x,y,a_)

then the identification process is defined by the index j that minimizes the set {aj}. The local identification

error for each pixel (x, y), a(x, y), which associates pj with the the recovered reflectance/5, is given by

_(x,y;pj) = rain{_j(x,y;/5)}. (a_)
3

Similarly, the global identification error g that associates pj with /5 over the set of pixels {(x, y)} is given

by

= rain{cj(/5)}. (a2)
3

The identification and classification process is also accompanied by the fraction of misidentified pixels

Fm, the fraction of unidentified pixels Fu, and the assessment of the misidentified and unidentified pixels-

location distribution in the set {(x, y)}. An unidentified pixel is defined as a pixel for which the process

finds more than one index j with the same minimum g(x, y; pj), or for which the rmse is above a specified

threshold. On one hand, without any threshold, there will always be a minimum g(x, y; pj), and therefore

no unidentified pixels. On the other hand, a low threshold will increase Fu and decrease Fm. Therefore,

there is a tradeoff between the pre-determined rmse threshold and the values of F_ and Fm.
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5 Deterministic Evaluation

5.1 Spectral Assessment

This section assesses the recovery techniques presented in Sec. 4 for the deterministic case, i.e., when all

the components in Eq. 19 are well defined, with no inaccuracies, noise, or uncertainties. Fig. 16 compares

the Bowker (Eq. 26) and Richter (Eq. 27) 1-D spectral reflectance recovery techniques to the well-known

apparent reflectance (albedo) approximation (Eq. 18) for constant initial reflectances of p(A) = 0.1, 0.4, and

0.7, over the set of permissible spectral bands {Ai}, as functions of the solar zenith angle and the visibility.

This purely 1-D spectral simulation complements Fig. 14 which illustrates a spatial cut-through at the

spectral band of A = 0.5#m. The recovery processes have no a priori knowledge of the initial reflectance,

and assume a constant spectral reflectance of p(A) = 0.4. Results show that the accuracy for all the

recovery techniques increases with increased reflectance, improved visibility, and decreased optical depth

(decreased solar zenith angle). Bowker's technique performs well only for a priori known initial reflectances,

as demonstrated by the recovery of the p(A) = 0.4 case. For unknown initial reflectance, however, this

estimate deteriorates, particularly in the visible and near-IR range. By contrast, Richter's technique

performs consistently better for the whole range of reflectances, visibility conditions, and solar zenith

angles, a robustness that is also affirmed by simulation results summarized in Appendix A.1, Tables A.1

A.3.

5.2 Spatio-Spectral Assessment

Figure 17 illustrates the recovered hyper-spectral cube illustrated in Fig. 12 and 13(a), after the iden-

tification process from the albedo, Bowker, and Richter approximations, respectively. The simulation

parameters range from high visibility of 2akin to low visibility of 5km, and from solar zenith angle of 0° to

45 °. Adjacency blurring is simulated with a spatial spread scale factor of s = 3. The recovery techniques

assume a constant spectral reflectance of p(A) = 0.4. For each pixel, the recovered spectral signature is

identified by the process described in Section 4.3, in which each recovered signature is compared to the bank

of reflectance signatures listed in Table 2. The closest signature in the minimum rinse sense is classified

as the pixel's reflectance, and is assigned the gray level associated with that reflectance, while unidentified

pixels are marked in white. The identification threshold for the rinse in these simulations was set to 1.5.

The global rinse is marked on each recovered image. Tables A.4 A.6 in Appendix A.1 summarize the

identification process for each reflectance selected for Fig. la.
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Figure 16: 1-D recovery of the 0.1, 0.4, and 0.7 reflectances, using the apparent reflectance (albedo),

Bowker and Richter techniques.
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Visibility 23km, Solar zenith 0

_iiiiiiiiiiii

Visibility 15km, Solar zenith 30

Visibility 5km, Solar zenith 45

(a) Albedo (b) Bowker (c) Richter (spectral) (d) Richter (spatial)

Figure 17: Recovery of the polygon test target using the (a) apparent reflectance (albedo) (b) Bowker, (c)

Richter and (d) spatial correction to Richter with w = 9. The global rinse is marked on each image.
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Figure 18: Location of the misidentified pixels after Richter's spectral (top) and spatial (bottom) recoveries

for visibilities of (a) V = 23kin, (b) V = 15kin, and (c) V = 5kin. The global fraction of mismatched

pixels is marked on each image.
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Assessment of the spatio-spectral deterministic simulation by Tables A.4 A.6 and by Fig. 17 shows that

the classification process that follows the apparent reflectance approximation correctly identifies only two

reflectances and misidentifies twelve, independent of the acquisition conditions. The identified signatures,

gypsum sand and silicon sand, cover 40% of the target. Classification from Bowker reflectance estimates

correctly adds potatoes and wet red clay to the identification process for visibilities of 23km and 15km,

despite their relatively small area in the target (a total of 96 and 39 pixels respectively). However, for the

low visibility of 5km, Bowker's technique correctly identifies only two signatures, misidentifies nine, and can

not identify the reflectances of fallow field, oats, and Whitley County soil. The spectral Richter recovery

technique correctly identifies eleven reflectance signatures, independent of the acquisition conditions, and

misidentifies potatoes (96 pixels), wet red clay (39 pixels), and water (2 pixels). By contrast to both

the Bowker and the albedo approximations, misidentification in Richter's spectral recovery technique is

centered along the target's edges, as illustrated in the top row of Fig. 18, which depicts the location of

misidentified pixels for the spectral (top) and spatial (bottom) Richter recoveries. As demonstrated by

both the decreasing rmse of the recovery illustrated in Fig. 17, and the decreasing misidentification fraction

whose location is depicted in Fig. 18, the spatial correction by Eq. 28 with w = 9 minimizes the adjacency

effects in the identification process, enables a correct identification of all the reflectances, and reduces the

total fraction of misidentified pixels by a factor of two, as illustrated in the bottom row of Fig. 18. Figs. 17

and 18 also show that the misidentification error for Richter's recovery technique increases with decreased

visibility.

Consequently, these results show that Richter's recovery technique is robust to different acquisition

conditions and performs well for a variety of reflectances, without a prior knowledge of their reflectance

signature. By contrast, the apparent reflectance and Bowker estimates are sensitive to both the acquisition

conditions and the lack of knowledge of the original reflectance. Inaccuracies in Richter's recovery technique

stem from the adjacency effects, while inaccuracies in Bowker's technique stem from inaccuracies in the

estimate of the path radiance component Lp. These results suggest that the performance of both the

albedo approximation and Bowker's recovery technique may worsen for the stochastic case, where random

noise, uncertainties, and perturbations are added to the simulation of the measured radiance.

6 Stochastic Evaluation of the Bowker Technique

The main shortcoming of the Bowker recovery technique lies in the necessity of obtaining a good estimate

of the path radiance response Lv(A), a term that is dependent on the actual reflectance. This section as-
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sessesthe sensitivityof Bowker'srecoverytechniqueto perturbationsanduncertaintieswhenthe original

reflectanceis knowna priori. Correct identification and robustness of this technique under these conditions

will make it suitable for the detection of irregularities in areas of known reflectance signatures, and moni-

toring homogeneous areas by locating invading substances. It will not, however, enable the identification

of the invading substances, as it will only verify their existence and monitor their location within each

monitored area.

6.1 End-to-End Stochastic Simulation

The performance of Bowker's technique for known reflectances is simulated for the set of acquisition condi-

tions identified in this report, namely, solar zenith angles of 0z = 0 °, 30 °, and 45 °, for visibility conditions

of V = 5kin, 10kin, 15kin, and 23kin. Adjacency blurring effects are simulated with 10% perturbation of

the path radiance Lp, and a spatial spread factor of s = 3. Additional stochastic perturbation includes

10% uncertainty in the reflectance signature, global irradiance perturbations of 10%, and random sensor

noise n+_ of 5% around the received radiance signal.

Tables A.7 A.9 in Appendix A.2 summarize the performance of this simulation as functions of the

visibility and the solar zenith angle, for the ten reflectance areas that are larger than 100 pixels in the

target illustrated in Fig 12. Figs. 19 and 20 illustrate the results of the identification process after Bowker's

recovery process and the spatial location of the misidentified reflectances, respectively. Similar to Fig. 18,

misidentified pixels are marked black in Fig. 20. The global rmse is marked on each recovered image in

Fig. 19, while the global fraction of mismatched pixels is marked on each illustration in Fig. 20. None

of the four reflectances with areas smaller than 100 pixels were correctly identified. All the remaining

ten reflectances were correctly identified for visibility of 23kin, five of which had no mismatched pixels

throughout their respective reflectance areas. Similarly, all the remaining ten reflectances were correctly

identified for visibility of 15kin, with only a mild increase in the fraction of misidentified pixels in the

remaining five reflectances. This performance deteriorates as the visibility decreases, as is evident by the

increase in the fraction of mismatched pixels. Only three signatures were completely identified with no error

for V = 10kin, and only two for V = 5kin, where four out of the ten reflectance signatures are completely

misidentified, and the fraction of misidentified pixels increases. The concentration of misidentified pixels

at the border between reflectance areas, as illustrated in Fig. 20, shows that the Bowker recovery technique

is sensitive to adjacency effects. In addition, these figures show that for very low visibility, this technique

is also very sensitive to perturbations and random noise. This sensitivity increases with the increase of the

irradiance path components a result of larger solar zenith angles. However, the identification process for
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Visibility:

5kin

lOkm

15km

23km

Solar zenith angle: 0 30 45

Figure 19: Reflectance recovery of the polygon test target using Bowker's technique with a priori known

reflectances. The global rinse is marked on each image.
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Visibility:

5km

lOkm

15km

23km

Solar zenith angle: 0 3O 45

Figure 20: Spatial location of misidentified reflectance signatures in Fig. 19. The global fraction of mis-

matched pixels is marked on each image.
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the stochastic process works well as the visibility improves.

7 Stochastic Evaluation of the Richter Technique

This section assesses the sensitivity and robustness of Richter's recovery technique to perturbations in

the measured radiance. Section 7.1 assesses the end-to-end stochastic performance of Richter's recovery

technique. Section 7.2 assesses the sensitivity of Richter's recovery technique to sensor noise. Section 7.3

assesses the sensitivity of Richter's recovery technique to small perturbations of the reflectance signature.

Section 7.4 assesses the sensitivity of Richter's recovery technique to small perturbations of the irradi-

ance. Finally, Section 7.5 assesses the robustness of Richter's recovery technique to wrong acquisition

assumptions.

7.1 End-to-End Stochastic Simulation

This section assesses the general performance of Richter's reflectance recovery from a hyper-spectral mea-

sured radiance cube simulated by the stochastic process given by Eq. 22. The simulation for this section

assumes acquisition with solar zenith angles of 0z = 0 °, 30 °, and 45 °, and visibility conditions of V = 5km,

10km, 15km, and 23km. Spatial background scattering is simulated with 10% perturbation of the path

radiance Lp, and a spatial spread factor of s = 3. Additional stochastic perturbation includes 10% uncer-

tainty in the reflectance signature, irradiance perturbations of 10%, and random sensor noise n,i of 5%

around the received radiance signal.

Figure 21 illustrates results of the identification process for the simulated measured radiance after

Richter's recovery technique. The widths w used for this recovery match the optimal widths determined

in Section 4.2 for the deterministic case, namely, widths of 5, 9, 11, and 13 pixels for visibilities of 5,

10, 15, and 23km respectively. The recovery global rmse is marked on each illustrated recovery. Fig. 22

illustrates the location of the respective mismatched pixels, where the global fraction of mismatched pixels

is marked on each image. Quantitative performance assessment for 0z = 30 ° and for all the major identified

reflectance signatures for each reflectance area, as a function of their relative fraction, is summarized in

Appendix A.3, Table A.10. Results show that for the high-visibility conditions of V = 15km, and 23km,

the identification process identifies all 14 reflectances of the target illustrated in Fig. 12, including the

two pixels of water. Moreover, a comparison between this stochastic simulation and the deterministic case

illustrated in Figs. 17 and 18 shows improvement near the edges for the stochastic recovery, probably due
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Visibility: w:

5km

lOkm

15km 11

23km 13

Solar zenith angle: 0 30 45

Figure 21: Reflectance recovery of the polygon test target using the spatio-spectral Richter. The global

rinse is marked on each image.
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Figure 22: Spatial location of misidentified reflectance signatures in Fig. 21. The global fraction of mis-

matched pixels is marked on each image.
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to a wider w parameter. Inaccuracies, which constitute only 2-4% of the target, are centered around a

few edges, where the spatial correction fails to completely correct for the adjacency blurring effect. This

performance deteriorates with decreased visibility and increased path length (higher solar zenith angle),

when noise sources combined with low visibility decrease the ability of Richter's technique to accurately

identify the correct reflectance. Moreover, recovered images for V = 10km and 5km show Mach-bands

around most of the target's transitions.

7.2 Sensitivity to Sensor Noise

This section assesses the sensitivity of Richter's spectral and spatial recovery techniques to sensor noise.

The simulation assumes acquisition with a solar zenith angle of 30 °, and visibility conditions of V = 5km,

10km, 15km, and 23km. The adjacency effects are simulated by 10% perturbation of the path radiance

Lv, and a spatial spread factor of s = 3. To simulate sensor noise levels of 5% and 10%, the stochastic

process perturbs the deterministic hyper-spectral radiance cube LT(X, 9, A_) at each (x, 9) location with a

random additive noise of uniform distribution in the range [-n%, n%]LT(x, 9, A_), where n = 5, and 10,

respectively. The case with no sensor noise serves as a performance benchmark.

Figures 23 and 24 assess the sensitivity of Richter's spectral recovery by Eq. 27 to sensor noise n_i as

a function of the visibility for the above simulation parameters. Figs. 25 and 26 assess the corresponding

performance of the spatial correction by Eq. 28. Consistent with Fig. 21, the width w used for the spatial

correction as a function of the visibility is 5, 9, 11, and 13 pixels for visibilities of 5, 10, 15, and 23km

respectively. The first column in each figure, illustrating the performance without sensor noise, serves

as a benchmark for the stochastic optimal performance in presence of adjacency effects. Fig. 26 shows

an average improvement by a factor of two in the fraction of misidentified pixels relative to the fractions

in Fig. 24. Fig. 25 also shows the creation of Mach bands for the 5km visibility compared to Fig. 23.

Consistent with Fig. 14(d), however, spatial correction in presence of random sensor noise boosts the

noise elements by differentiating noise elements instead of reflectance transitions, thereby impeding the

identification process. Therefore, the spatial correction improves the identification process near the edges

at the cost of increased misidentified pixels within each reflectance area. Moreover, the spatial recovery

technique completely fails for very low visibility, where the fraction of misidentified pixels reaches 57%.

However, for reasonable visibility conditions above 10km, and reasonable sensors with noise levels that do

not exceed 5% of the received signal, Richter's spatial technique improves the performance of Richter's

spectral recovery.
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Visibility:

5kin

lOkm

15km

23km

Sensor noise : 0% 5% 10%

Figure 23: Richter's spectral reflectance recovery as a function of a sensor random noise. The global rinse

is marked on each recovered image.
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Visibility:

5km

lOkm

15km

23km

Sensor noise: 0% 5% 10%

Figure 24: Location of misidentified reflectance signatures in Fig. 23. The global fraction of mismatched

pixels is marked on each recovered image.
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Visibility: w:

5km

lOkm

15km 11

23km 13

Sensor noise : 0% 5% 10%

Figure 25: Richter's spatial reflectance recovery as a function of sensor random noise. The global rmse is

marked on each recovered image.
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Sensor noise: 0% 5% 10%

Figure 26: Location of misidentified reflectance signatures in Fig. 25. The global fraction of mismatched

pixels is marked on each recovered image.
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Visibility:

5km

lOkm

15km

23km

Sensor noise: 0% 5% 10%

Figure 27: Location of misidentified reflectance signatures after applying Richter's spatial correction in a

simulation that includes an optical blur of a camera. The global fraction of mismatched pixels is marked

on each image.
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Figure 27 assesses the effects of the camera's optical blur on the performance of Richter's spatial

recovery. The simulation adds a camera with an optical-index of a_(Ai) = 0.6 and an electronic noise with

a signal-to-noise ratio (SNR) of 64 across the spectral bands. This relatively high SNR ensures that the

sensor noise remains the main noise source for this simulation. A comparison of this figure to Figs. 24 and

26 shows that optical blur stabilizes the performance of the spatial Richter correction by attenuating the

sensor noise, thereby enabling Richter's spatial correction to improve the identification near the reflectance

transitions without increasing the misidentified pixels within each reflectance area. Significant improvement

is observed, especially for low visibility, where the fraction of misidentified pixels decreased from 29% and

57% to 11% for sensor noise levels of 5% and 10% around the received radiance signal, respectively.

7.3 Perturbation of the Initial Reflectance Signature

This section evaluates the sensitivity of the Richter technique to uncertainties in the database of reflectance

signatures, as well as natural non-uniformities, when measuring a single reflectance area under the same

atmospheric conditions. The uncertainty in the reflectance signature database is typically about 10%

around the signature's mean [4]. To simulate 5%, 10%, and 15% uncertainties, the stochastic process

perturbs the deterministic hyper-spectral reflectance cube p(x, 9, A), illustrated in Fig. 12, at each (x, 9)

location with a random additive noise of uniform distribution in the range [-n%, n%]p(x, 9, A), where n = 5,

10, and 15, respectively. The simulation then uses the perturbed cube to recalculate L,(x, 9, A) (Eq. 8) and

substitutes the result in Eqs. 10 and 11 to recalculate LT(X, y, A) (Eq. 19). Other simulation components,

such as the irradiance and transmittance components, remain the unperturbed deterministic components,

as extracted from the MODTRAN simulations for the deterministic case. While not completely accurate,

this simulation is a practical approximation to a complete MODTRAN simulation of each perturbed pixel

under each atmospheric condition.

Figs. 28 and 29 compare the sensitivity of Richter's spatial recovery techniques to uncertainties in

the initial reflectance signatures, with and without the simulation of a camera, by depicting the spatial

location of misidentified reflectance signatures. The adjacency effects are simulated with 10% perturbation

of the path radiance Lv, and a spatial spread factor of s = 3, and the sensor noise level is set to 2%

around the measured radiance. Camera parameters are an (Ai) = 0.6 and electronic SNR of 64 across the

spectral bands. The low level of electronic and sensor noise sources ensure that the dominant source of

error remains the perturbations in the initial reflectance signature. Results show that the Richter recovery

technique is robust to uncertainties in the initial reflectance signature. The fraction of unidentified pixels

for 5% perturbation in Figs. 28 and 29 is similar to the fraction of unidentified pixels for the stochastic case
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Reflectance
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\
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Figure 28: Location of misidentified reflectance signatures after Richter's spatial reflectance recovery for

initial reflectance perturbations of 5%, 10% and 15%, for 0z ---- 30 °. The global fraction of mismatched

pixels is marked on each image.
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Visibility:

5km

10km

15km

23km

Reflectance

perturbations: 5% 10% 15%

Figure 29: Location of misidentified reflectance signatures after Richter's spatial reflectance recovery for

initial reflectance perturbations of (a) 5%, (b) 10% and (c) 15%, for 0z = 30 °, _ (Ai) = 0.6 and electronic

SNR of 64 across the spectral bands. The global fraction of mismatched pixels is marked on each image.
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with no sensor noise, illustrated in Figs. 26 and 27 respectively. The addition of optics to the simulations

illustrated in Fig. 29 reduces the fraction of misidentified pixels within each reflectance area, where optical

blur is the dominant camera degradation, and increases the fraction of these pixels near the reflectance

transitions, where optical aliasing is the dominant camera degradation. Nevertheless, both simulations

demonstrate that this technique is relatively robust to uncertainties up to 15% in the initial reflectance

signature for a wide range of visibility conditions.

7.4 Perturbations in the Atmospheric Conditions

This section evaluates the sensitivity of Richter's recovery technique to perturbations in the irradiance

E(A), which simulate inaccuracies and local perturbations in the assumed atmospheric conditions, such

as visibility, and aerosol types and densities. These perturbations do not simulate shadowing effects. To

simulate 5%, 10%, and 15% inaccuracies, a stochastic process perturbs the deterministic hyper-spectral

total irradiance E(x, y, A) at each (x, y) location with a random additive noise of uniform distribution

in the range [-n%, n%]E(x, y, k), where n = 5, 10, and 15, respectively. The simulation then uses the

perturbed cube to recalculate L,(x, y, A) (Eq. 8) and substitutes the result in Eqs. 10 and 11 to recalculate

LT(x,y,a) (Eq. 19).

Figures 30 and 31 assess the sensitivity of the identification process to uncertainties in the irradiance

at acquisition time, with and without the simulation of a camera, by depicting the spatial location of

misidentified reflectance signatures. The adjacency effects are simulated with 10% perturbation of the

path radiance Lp, and a spatial spread factor of s = 3, the sensor noise level is set to 2% around the

measured radiance, and reflectance perturbations are set to 5% around the initial reflectance signature.

Camera parameters are a_(Ai) = 0.6 and electronic SNR of 64 across the spectral bands. The low level

electronic and sensor noise sources and low reflectance perturbation level ensure that the dominant source

of error is due to perturbations in the total irradiance. Results show that the Richter recovery technique

is robust to uncertainties in the atmospheric acquisition conditions, as the fraction of unidentified pixels

remains almost unchanged as the perturbation level increases from 5% to 15%. This fraction is also similar

to the fraction of unidentified pixels for the stochastic case with no sensor noise illustrated in Figs. 26 and

27. The addition of optics to the simulation, illustrated in Fig. 31, reduces the fraction of misidentified

pixels within each reflectance area, where optical blur is the main source of error, and increases the fraction

of these pixels near the reflectance transitions, where spatial aliasing becomes the main source of error.

Nevertheless, both simulations demonstrate that Richter's recovery technique is robust to atmospheric

uncertainties, i.e., perturbations in the surface irradiance of up to 15%, for a wide range of visibility
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Figure 30: Location of misidentified reflectance signatures after applying Richter reflectance recovery from

radiance acquired with perturbations of the total irradiance of 5%, 10% and 15%, for 0z ---- 30 °. The global

fraction of mismatched pixels is marked on each image.
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Visibility:
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10km
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23km

Atmospheric
perturbations: 5% 10% 15%

Figure 31: Location of misidentified reflectance signatures after applying Richter reflectance recovery from

radiance acquired with perturbations of the total irradiance of 5%, 10% and 15%, for 0z = 30 °, cr_ (Ai) = 0.6,

and electronic SNR of 64 across the spectral bands. The global fraction of mismatched pixels is marked

on each image.
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Actual visibility: 15km

0.41

Assumed
visibility: 5km 10km 15km 23km

Figure 32: Image of the recovered reflectance (top) and the location of misidentified pixels (bottom) after

Richter's reflectance recovery. The global rmse is marked on the top row, and the global fraction of

mismatched pixels is marked on the bottom row.

conditions, provided that the sensor noise is relatively low.

7.5 Incorrect Acquisition Assumptions

This section evaluates the robustness of Richter's recovery technique to wrong acquisition assumptions.

Figure 32 shows the identification results of simulations with Richter's recovery from radiance measurements

with an actual visibility of 15km, when the recovery process incorrectly assumes visibilities of 5km, 10km,

and 23kin, respectively. Table A.11 in Appendix A.3 summarizes the local performance of the identification

of each reflectance area in the target. The hyper-spectral radiance target is acquired with 0z = 30 °, 10%

uncertainty in the reflectance signature p, 10% perturbations of the irradiance/3, 10% perturbation of the

path radiance Lp, adjacency effects with s = 3, sensor noise of 5%, and camera parameters characterized

by cr_(A_) = 0.6 and electronic noise with SNR of 64 across the spectral bands. As before, the hyper-

spectral reflectance cube is visualized by assigning the pre-designated gray level to each recovered spectral

signature, where the global rmse is marked on each recovery (Fig. 32 top). The identification process is

visualized by assigning a black level to misidentified pixels, where the global fraction of misidentified pixels
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is markedon eachvisualization(Fig.32bottom).

Resultsshowa misidentificationerror of 7%for correctvisibility assumption,wherethe locationof

most of the misidentifiedpixels is at the bordersbetweenreflectancesignatures. Oats is completely

misidentifiedwhenassuminga slightly worsevisibility conditionof 10kininsteadof the actualvisibility

of 15kin(TableA.11). However,the global misidentificationfractionslightly decreasesfrom 7%to 5%,
mainly at the bordersbetweenreflectanceareas,and probablybecauseof the changein w from 11 to

9 pixels. Assuming a slightly better visibility condition of 23kin instead of the actual 15kin increases

the fraction of misidentified pixels to 17%, where barley is mainly identified as oats (64%), burr oak

as sycamore (59%), multi-mineral soil sample as wet sand (52%), and misidentification at the borders

increases. Incorrect assumption of V -- 5kin results in a sharp decrease in the identification accuracy, where

the misidentified fraction increases to 41%. Assessment of the local identification errors in Table A.11 shows

only three correctly-identified reflectance signatures: gypsum sand, silicon sand, and the Whitley county

soil sample signatures, and a partial identification of 26% and 22% for the wheat and multi-mineral soil

sample signatures respectively. Consequently, these results indicate that the Richter correction technique

is robust to slight differences between the actual and assumed visibilities, but is increasingly sensitive to

larger differences between the two.

Figures 33 and 34 show simulations of Richter's recovery from radiance measurements with an assumed

visibility of 15kin and 5kin respectively, when the actual visibility is 5kin, 10kin, 15kin, and 23kin, respec-

tively. Tables A.12 and A.13 in Appendix A.3 summarize the local performance of the identification of

each reflectance area in the target. All the other simulation parameters remain the same as in Fig. 32.

Results indicate a misidentification error of 7% and 11% for correct visibility assumption of 15kin and 5kin

respectively, where the location of most of the misidentified pixels is at the borders between reflectance

signatures. A comparison between Fig. 32 for assumed visibility of 5kin and actual visibility of 15kin, and

Fig. 34 for actual visibility of 15kin and assumed visibility of 15 shows similar performance. A comparison

between Fig. 33 and 34 shows that Richter's recovery technique is extremely sensitive to the mismatched

visibility conditions particularly when the assumed visibility is lower than the actual visibility.

Figure 33 shows that the global identification error for actual visibility of 5kin and assumed visibility

of 15kin increases from 11% (correct visibility assumption) to 59%, where only gypsum sand and silicon

sand are correctly identified. The identification error decreases as the actual visibility increases. The

misidentification fraction in Fig. 33 decreases from 59% to 31% when the actual visibility increases from

5kin to 10kin. The process in this case correctly identifies oats, wheat, silver maple, gypsum sand, silicon

sand and the Whitely county soil reflectance signatures. The identification near the edges for an actual
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Assumed visibility: 15km

0.59 0.31

Actual
visibility: 5km 10km 15km 23km

Figure 33: Image of the recovered reflectance (top) and the location of misidentified pixels (bottom) after

Richter's reflectance recovery. The global rinse is marked on each recovered image (top), and the global

fraction of mismatched pixels is marked on location image (bottom).
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Assumed visibility: 5km

0.51 0.42 0.48

Actual
visibility: 5km 10km 15km 23km

Figure 34: Image of the recovered reflectance (top) and the location of misidentified pixels (bottom) after

Richter's reflectance recovery. The global rinse is marked on each recovered image (top), and the global

fraction of mismatched pixels is marked on location image (bottom).
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visibility of 23kmis moreaccurate,but the processmisidentifiesoatsasbarley.Thefurther decreasein the

misidentificationfractionfrom 7%(correctassumptions)to 4%is probablydueto thechangeof thewidth
parameterw from 11 to la pixels. This case demonstrates that the recovery and identification processes

are robust to the assumption of a slightly lower visibility than the actual one.

The global identification error in Fig. 34 increases from 11% to 51%, 42%, and 48%, when the actual

visibility increases to 10, 15, and 23km respectively, and the assumed visibility remains 5km. As indicated

from Table A.la, only gypsum sand and silicon sand are correctly identified when the actual visibility is

10km; only gypsum sand, silicon sand, and Whitley county soil are correctly identified when the actual

visibility is 15km; and only gypsum sand, silicon sand, and wheat are correctly identified when the actual

visibility further increases to 23km. Consistent with previous results, these figures and the corresponding

assessment tables re-emphasize that more than any other parameter, the Richter recovery technique is

sensitive to incorrect estimates of the actual visibility during acquisition.

8 Summary

This report assessed the performance of four reflectance-recovery techniques in the context of a controlled

spatio-spectral simulation that mimics the remote-sensing acquisition of hyper-spectral data. The database

of reflectance signatures included 27 signatures from five different categories. The random hyper-spectral

cube target consisted of 14 randomly-selected signatures from that database. Simulations included spectral

and spatio-spectral deterministic evaluation of each recovery technique, and a comprehensive stochastic

spatio-spectral set of simulations which assessed the sensitivity and robustness of these techniques to typical

uncertainties encountered in real acquisition scenarios.

The tight control on all the simulation parameters, from reflectance, to measured radiance, to recovered

signatures, enabled a close and controlled assessment of each recovery technique. Results for the albedo

estimate show that albedo estimates are too high for low reflectances, and too low for high reflectances. As

a result, the identification process based on albedo estimates performs poorly. Bowker's recovery technique

performs well when the original reflectance is known a priori, but performs poorly when this reflectance

has to be estimated. Its performance for an a priori known reflectance signature is sensitive to decreased

visibility, and is suitable for detecting irregularities in areas of known reflectance signatures.

Comparison between Richter's spectral and spatial recoveries show that the spatial recovery technique

is sensitive to noise, and boosts small perturbations in its attempt to deblur the spatial scattering blur.

This technique is particularly sensitive to sensor noise. Results show high identification errors for sensor
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noise above 5%, particularly for low visibility conditions. However, simulation results also suggest two ways

to enhance the identification process in case of dominant sensor noise. The identification process improves

when applied on Richter's spectral recovery, without any spatial correction. Identification results improve

even further with optical blur, provided that the electronic noise is relatively low. Richter's technique is

also sensitive to large inaccuracies in the estimation of the actual visibility.

In general though, results strongly indicate that Richter's reflectance recovery technique is robust and

relatively insensitive to stochastic noise, perturbations, and minor uncertainties in the atmospheric condi-

tions. Identification results remained remarkably stable for up to 15% uncertainties in the initial reflectance

signatures, and 15% perturbations in the assumed atmospheric conditions, when the sensor noise is low and

the location of misidentified pixels remained centered at the reflectance boundaries. Misidentification after

Richter's recovery has more to do with the particular geometry and size of each individual reflectance area

than with the ability of the recovery technique to identify the reflectance signature. Therefore, these results

suggest that this recovery technique performs well for applications that require reflectance identification

from remote-sensing measurements.
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A Appendix:

Assessment Tables

A.1 Deterministic Recovery Summary

Tables A.1 A.3 summarize the rmse of recovered reflectance signatures by the albedo, Bowker, and Richter

recovery techniques, respectively, relative to the database of signatures. Both the Bowker and Richter

techniques are carried out with an assumed constant initial reflectance of p(+_) = 0.4. The results confirm

that this assumption does not affect the performance of the Richter recovery technique, as it performs well

almost independent of the visibility and solar zenith angle conditions. By contrast, the assumption of a
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constant initial reflectance of p(+_) ----0.4 reduces the accuracy of the Bowker technique over its performance

for known reflectances, particularly for low visibility, while it performs relatively better for high visibility

of 23kin.

Tables A.4 A.6 summarize the quantitative assessment of the deterministic recovery and identification

process for three different atmospheric acquisition conditions. These tables summarize the rinse of the

albedo, Bowker, and Richter recovery techniques for an assumed initial reflectance of p(A) ----0.4. The

value of F indicates the fraction of the mainly identified reflectance within the area of each reflectance

in the spatio-spectral random polygon cube. For example, F ---- .99 for the barley category in Table A.4

indicates that 99% of the barley area in the spatio-spectral random polygon cube was identified as basalt,

while F ----0.94 for the burr oak category indicates that 94% of the oak area in the spatio-spectral random

polygon cube was identified as American elm. No F value is assigned in cases where a particular reflectance

is completely unidentified. The global rinse, and the global fraction of correctly identified pixels F is

summarized under "Global". These tables show that the albedo approximation correctly identifies only

two reflectance signatures and misidentifies 60% of the cube, while the Bowker recovery technique correctly

identifies only four spectral signatures. For the same conditions, the spectral Richter technique correctly

identifies all the spectral signatures, while the spatial correction with w ---- 9 decreases the number of

misidentified pixels by a factor of two. Some of the inaccuracy can be attributed to the adjacency blurring

effects, particularly for reflectance signatures with few pixels and narrow geometrical areas. However,

Richter's spatial correction techniques minimizes these defects.

A.2 Bowker Recovery with Known Reflectance Signatures

Tables A.7 A.9 summarize the performance of a stochastic simulation with Bowker's recovery tech-

niques, assuming known reflectances. The performance of Bowker's technique is simulated for the set of

acquisition conditions identified in this report, namely, solar zenith angle of 0z = 0°, 30 °, and 45 °, for

visibility conditions of V = 5km, 10km, 15km, and 23km. Adjacency effects are simulated by 10% pertur-

bation of the path radiance Lp, and a spatial spread factor of s = 3. Additional stochastic perturbations

include 10% uncertainty in the reflectance signature, irradiance perturbations of 10%, and a random sensor

noise of 5% of the received radiance signal.

The tables summarize the rinse for each reflectance in the the hyper-spectral cube, and lists the two

main identified reflectances for each category, together with their local fraction F within that category, and

the global misidentification fraction F,_. Finally, the global information summarizes the global rinse for
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Category

Oz=O ° Oz =30 ° 0_=45 °

5kin 10kin 15kin 23kin 5kin 10kin 15kin 23kin 5kin 10kin 15kin 23kin

Barley 1.322 1.046 0.932 0.849 1.342 1.045 0.926 0.842 1.489 1.145 1.003 0.902

Beans 0.981 0.739 0.640 0.568 0.987 0.729 0.627 0.555 1.105 0.802 0.680 0.595

Oats 0.838 0.640 0.560 0.501 0.840 0.629 0.546 0.488 0.937 0.689 0.590 0.520

Potatoes 0.575 0.392 0.317 0.263 0.563 0.371 0.297 0.246 0.638 0.410 0.322 0.262

Soybeans 1.008 0.813 0.733 0.674 1.023 0.813 0.728 0.668 1.130 0.886 0.785 0.71

Tobacco 1.451 1.142 1.015 0.922 1.475 1.143 1.010 0.915 1.639 1.254 1.095 0.982

Wheat 0.876 0.696 0.623 0.569 0.884 0.691 0.614 0.561 0.979 0.754 0.662 0.597

Fallow field 1.113 0.901 0.813 0.748 1.131 0.902 0.809 0.744 1.249 0.984 0.874 0.795

American Elm 0.382 0.258 0.209 0.173 0.370 0.242 0.194 0.161 0.419 0.266 0.209 0.171

Silver Maple 0.326 0.220 0.179 0.149 0.317 0.207 0.167 0.140 0.359 0.229 0.181 0.149

Burr Oak 2.331 1.847 1.646 1.500 2.380 1.859 1.649 1.499 2.642 2.042 1.792 1.613

Ponderosa Pine 1.201 0.963 0.864 0.793 1.220 0.963 0.860 0.788 1.349 1.052 0.930 0.843

Sycamore 1.308 1.035 0.923 0.841 1.328 1.035 0.917 0.835 1.474 1.134 0.993 0.894

Blue Grass 4.086 3.219 2.861 2.599 4.183 3.253 2.877 2.609 4.651 3.582 3.136 2.816

Basalt 0.286 0.234 0.214 0.200 0.278 0.224 0.204 0.190 0.305 0.239 0.214 0.197

Dry Red Clay 0.277 0.208 0.180 0.159 0.282 0.207 0.178 0.157 0.317 0.229 0.194 0.170

Wet Red Clay 0.642 0.466 0.393 0.340 0.644 0.456 0.382 0.330 0.725 0.505 0.417 0.355

Gypsum Sand 0.140 0.111 0.098 0.089 0.169 0.133 0.116 0.103 0.195 0.155 0.135 0.120

Silicon Sand 0.169 0.128 0.112 0.099 0.198 0.150 0.129 0.113 0.228 0.175 0.150 0.130

Multi-Mineral 1.045 0.710 0.573 0.472 1.030 0.679 0.543 0.448 1.168 0.756 0.594 0.482

Whitley County 0.345 0.237 0.194 0.163 0.333 0.222 0.181 0.153 0.375 0.244 0.194 0.162

Powell Grassland 0.164 0.126 0.111 0.101 0.167 0.127 0.112 0.102 0.187 0.140 0.123 0.110

Dry Sand 0.149 0.116 0.104 0.095 0.155 0.120 0.107 0.097 0.174 0.133 0.118 0.107

Wet Sand 0.613 0.440 0.369 0.319 0.602 0.420 0.351 0.303 0.677 0.462 0.378 0.322

Water 2.749 2.029 1.732 1.514 2.785 2.017 1.711 1.494 3.134 2.240 1.876 1.618

Table A.I: The rinse between the original reflectance signature and its albedo recovery.
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Category

Barley

Beans

Oats

Potatoes

Soybeans

Tobacco

Wheat

Fallow field

American Elm

Silver Maple

Burr Oak

Ponderosa Pine

Sycamore

Blue Grass

Basalt

Dry red clay

Wet red clay

Gypsum sand

Silicon sand

Multi-mineral

Whitley County

Oz=O ° Oz=30 ° O_ =45 °

5km lOkm 15km 23km 5km lOkm 15km 23km 5km lOkm 15km 50km

9.655 4.444 2.975 2.067 9.376 4.363 2.933 2.044 8.889 4.218 2.857 2.001

7.139 3.329 2.222 1.528 6.970 3.278 2.196 1.540 6.652 3.185 2.151 1.490

6.218 2.891 1.932 1.331 6.065 2.846 1.908 1.320 5.784 2.765 1.869 1.350

4.452 2.129 1.419 0.962 4.367 2.104 1.407 0.957 4.211 2.058 1.386 0.946

7.445 3.411 2.288 1.596 7.220 3.346 2.254 1.578 6.829 3.227 2.192 1.544

10.486 4.832 3.236 2.245 10.188 4.745 3.189 2.221 9.663 4.590 3.108 2.174

6.487 2.986 2.001 1.391 6.303 2.933 1.974 1.377 5.979 2.837 1.923 1.350

8.230 3.767 2.527 1.764 7.979 3.694 2.489 1.744 7.541 3.561 2.419 1.705

3.013 1.447 0.966 0.655 2.957 1.432 0.958 0.652 2.857 1.403 0.946 0.645

2.546 1.227 0.819 0.555 2.501 1.214 0.813 0.553 2.418 1.190 0.803 0.548

16.777 7.710 5.164 3.590 16.278 7.563 5.086 3.548 15.407 7.299 4.947 3.469

8.852 4.063 2.725 1.899 8.587 3.986 2.685 1.877 8.124 3.846 2.611 1.836

9.509 4.377 2.932 2.037 9.234 4.298 2.890 2.016 8.752 4.155 2.815 1.973

29.159 13.417 8.985 6.241 28.290 13.160 8.847 6.164 26.769 12.695 8.602 6.024

2.353 1.089 0.730 0.508 2.292 1.072 0.722 0.504 2.185 1.041 0.707 0.497

2.028 0.949 0.632 0.433 1.985 0.937 0.626 0.430 1.906 0.914 0.616 0.425

4.793 2.250 1.497 1.020 4.688 2.218 1.481 1.013 4.500 2.162 1.453 1.037

0.117 0.060 0.040 0.026 0.116 0.059 0.040 0.027 0.115 0.059 0.040 0.027

0.262 0.130 0.089 0.062 0.260 0.130 0.090 0.063 0.256 0.131 0.091 0.065

7.770 3.721 2.479 1.679 7.617 3.677 2.457 1.668 7.343 3.594 2.417 1.646

2.938 1.401 0.933 0.633 2.881 1.386 0.926 0.630 2.779 1.356 0.913 0.623

Powell Grassland 1.366 0.645 0.430 0.294 1.340 0.638 0.427 0.293 1.292 0.624 0.422 0.290

Dry sand 1.193 0.563 0.376 0.257 1.171 0.557 0.373 0.256 1.129 0.545 0.368 0.254

Wet sand 4.762 2.251 1.501 1.023 4.661 2.223 1.487 1.016 4.480 2.169 1.462 1.003

Water 19.343 9.052 6.035 4.131 18.885 8.913 5.962 4.092 18.048 8.665 5.837 4.02

Table A.2: The rmse between the original reflectance signature and its Bowker recovery.
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Category

0z=0 ° 0z =30 ° 0_=45 °

5km 10km 15km 23km 5km 10km 15km 23km 5km 10km 15km 23km

Barley 0.021 0.017 0.017 0.017 0.024 0.019 0.019 0.019 0.028 0.023 0.022 0.022

Beans 0.019 0.016 0.015 0.015 0.021 0.018 0.017 0.017 0.025 0.021 0.021 0.020

Oats 0.018 0.015 0.014 0.014 0.021 0.017 0.016 0.016 0.025 0.020 0.020 0.020

Potatoes 0.015 0.013 0.013 0.013 0.018 0.015 0.015 0.015 0.021 0.018 0.018 0.017

Soybeans 0.020 0.016 0.016 0.016 0.022 0.018 0.018 0.018 0.027 0.022 0.021 0.021

Tobacco 0.021 0.017 0.017 0.017 0.024 0.020 0.019 0.019 0.029 0.024 0.023 0.023

Wheat 0.020 0.016 0.016 0.016 0.023 0.019 0.018 0.018 0.027 0.022 0.022 0.022

Fallow field 0.020 0.016 0.016 0.016 0.023 0.018 0.018 0.018 0.027 0.022 0.021 0.021

American Elm 0.014 0.013 0.013 0.013 0.017 0.015 0.014 0.014 0.020 0.017 0.017 0.017

Silver Maple 0.014 0.013 0.013 0.013 0.016 0.015 0.015 0.015 0.019 0.017 0.017 0.017

Burr Oak 0.025 0.021 0.020 0.020 0.029 0.023 0.022 0.022 0.034 0.028 0.027 0.027

Ponderosa Pine 0.021 0.018 0.017 0.017 0.024 0.020 0.020 0.020 0.029 0.024 O.O23 O.O23

Sycamore 0.021 0.018 0.017 0.017 0.024 0.020 0.020 0.020 0.029 0.024 0.023 0.023

Blue Grass 0.028 0.023 0.023 0.022 0.031 0.026 0.025 0.025 0.036 0.030 0.029 0.029

Basalt 0.015 0.013 0.013 0.013 0.017 0.014 0.014 0.015 0.020 0.017 0.017 0.017

Dry red clay 0.012 0.012 0.012 0.012 0.014 0.013 0.013 0.013 0.016 0.015 0.015 0.016

Wet red clay 0.014 0.013 0.013 0.013 0.017 0.014 0.014 0.014 0.020 0.017 0.017 0.017

Gypsum sand 0.008 0.009 0.010 0.011 0.009 0.010 0.011 0.012 0.009 0.011 0.012 0.013

Silicon sand 0.011 0.011 0.011 0.012 0.013 0.012 0.013 0.013 0.015 0.015 0.015 0.015

Multi-minerM 0.016 0.014 0.013 0.013 0.019 0.016 0.015 0.015 0.023 0.019 0.018 0.017

Whitley County 0.014 0.012 0.012 0.012 0.016 0.014 0.014 0.014 0.019 0.016 0.016 0.016

Powell Grassland 0.012 0.011 0.011 0.012 0.013 0.012 0.013 0.013 0.016 0.014 0.015 0.015

Dry sand 0.011 0.011 0.011 0.012 0.013 0.012 0.012 0.013 0.015 0.014 0.014 0.015

Wet sand 0.017 0.014 0.013 0.013 0.019 0.016 0.015 0.015 0.023 0.019 0.018 0.018

Water 0.022 0.017 0.016 0.016 0.025 0.020 0.018 0.018 0.030 0.024 0.023 0.022

Table A.3: The rinse between the original reflectance signature and its Richter recovery.
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Albedo

(Eq. 18)
Identified

mainly as

Richter (spectral)Bowker

(Eq. 26)

Identified

e mainly as

1.04 Gypsum

1.03 Gypsum

1.06 Gypsum

0.20 Potatoes

0.95 Silicon

1.06 Silicon

0.96 Silicon

1.02 Silicon

0.21 W R Clay

0.19 Gypsum

0.21 Silicon

1.01 Silicon

1.04 Gypsum

0.64 Silicon

0.80

Richter (spatial)

(Eq. 27) (Eq. 28)

Identified Identified

Category e F F e mainly as F e mainly as F

Barley 0.49 Basalt 0.99 1.0 0.04 Barley 0.84 0.02 Barley 0.89

Beans 0.51 Elm 0.50 1.0 0.04 Beans 0.84 0.02 Beans 0.91

Oats 0.44 Basalt 1.0 1.0 0.02 Oats 1.0 0.01 Oats 1.0

Potatoes 0.83 D. sand 0.74 0.70 0.54 D. sand 0.62 0.09 Potatoes 1.0

Wheat 0.54 D. sand 0.97 1.0 0.04 Wheat 0.98 0.02 Wheat 1.0

Fallow field 0.42 Basalt 1.0 1.0 0.05 Fallow 1.0 0.05 Fallow 1.0

Silver Maple 0.51 D. sand 0.98 1.0 0.02 Maple 1.0 0.02 Maple 1.0

Burr Oak 0.73 Elm 0.94 0.89 0.09 Oak 0.93 0.04 Oak 1.0

Wet Red Clay 0.91 Basalt 1.0 0.69 0.60 Powell 0.97 0.05 W R Clay 1.0

Gypsum sand 0.28 Gypsum 1.0 1.0 0.05 Gypsum 1.0 0.03 Gypsum 1.0

Silicon sand 0.53 Silicon 1.0 1.0 0.08 Silicon 1.0 0.05 Silicon 1.0

Multi-minerM 0.54 Basalt 1.0 1.0 0.09 M. minerM 0.66 0.06 M. minerM 0.67

Whitley soil 0.43 Basalt 1.0 1.0 0.02 Whitley 1.0 0.01 Whitley 1.0

Water 0.77 Basalt 1.0 0.5 0.39 W. sand 1.0 0.02 Water 1.0

Global 0.45 0.4 0.4 0.09 0.94 0.04 0.96

Table A.4: Performance assessment of the identification process for 0z = 0 ° and V = 23kin.

64



Category
Barley
Beans
Oats
Potatoes
Wheat
Fallowfield
SilverMaple
BurrOak

Albedo

(Eq.18)
Identified

e mainly as F

0.54 Basalt 1.0

0.56 Powell

0.48 Basalt

0.92 Gypsum

0.61 D. sand

0.45 Basalt

0.56 D. sand

0.83 Elm

Wet Red Clay 1.01 Basalt

Gypsum sand 0.34 Gypsum

Silicon sand 0.65 Silicon

Multi-mineral 0.60 Basalt

Whitley soil 0.47 Basalt

Water 0.86 Basalt

Global 0.50

Bowker

(Eq. 26)

Identified

e mainly as F

1.48 Silicon 1.0

Richter (spectral)

(Eq. 27)

Identified

e mainly as

0.04 Barley

1.0 1.47 Silicon 1.0 0.05 Beans

1.0 1.50 Silicon 1.0 0.02 Oats

0.60 0.28 Potatoes 0.60 0.67 D. sand

0.93 1.36 Silicon 1.0 0.05 Wheat

1.0 1.50 Silicon 1.0 0.07 Fallow

0.97 1.37 Silicon 1.0 0.03 Maple

0.66 1.45 Silicon 1.0 0.11 Oak

0.54 1.30 W R Clay 0.59 0.75 Powell

1.0 0.06 Gypsum

1.0 0.10 Silicon

1.0 0.27 Gypsum

1.0 0.31 Silicon

1.0 1.44 Silicon

1.0 1.48 Silicon

1.0 0.91 Silicon

0.4 1.13

Richter (spatial)

(Eq. 28)

Identified

F e mainly as F

0.83 0.03 Barley 0.88

0.83 0.03 Beans 0.89

1.0 0.02 Oats 1.0

0.80 0.11 Potatoes 1.0

0.95 0.03 Wheat 1.0

1.0 0.07 Fallow 1.0

1.0 0.02 Maple 1.0

0.89 0.05 Oak 1.0

0.49 0.07 W R Clay 0.69

1.0 0.03 Gypsum 1.0

1.0 0.06 Silicon 1.0

1.0 0.11 M. mineral 0.62 0.08 M. mineral 0.64

1.0 0.02 Whitley 1.0 0.01 Whitley 1.0

1.0 0.49 Whitley 1.0 0.03 Water 1.0

0.4 0.10 0.93 0.05 0.96

Table A.5: Performance assessment of the identification process for 0z = 30 ° and V = 15kin.
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Bowker

(Eq. 26)
Identified

mainly as F

Silicon 1.0

Silicon 1.0

Albedo

(Eq. 18)

Identified

e mainly as F

Basalt 0.99

Basalt 0.97

Basalt 1.0

Gypsum 1.0

D. sand 0.99

Basalt 1.0

D. sand 1.0

D. sand 1.0

Gypsum 0.95

Gypsum 1.0

Silicon 1.0

Basalt 1.0

Basalt 1.0

Basalt 1.0

0.4

Richter (spectral) Richter (spatial)

(Eq. 27) (Eq. 28)

Identified Identified F
Category e e mainly as F e mainly as

Barley 0.84 4.49 0.07 Barley 0.81 0.14 Barley 0.89

Beans 0.87 4.50 0.07 Beans 0.80 0.06 Beans 0.89

Oats 0.77 4.55 0.03 Oats 1.0 0.04 Oats 1.0

Potatoes 1.25 0.82 Wheat 0.27 1.12 Gypsum 0.80 3.00 Elm 0.57

Wheat 0.94 4.13 Silicon 0.89 0.09 Wheat 0.89 0.12 Wheat 0.99

Fallow field 0.71 4.55 0.12 Fallow 1.0 0.12 Fallow 1.0

Silver Maple 0.87 4.15 Silicon 0.98 0.05 Maple 0.97 0.22 Maple 0.99

Burr Oak 1.27 4.43 Silicon 0.99 0.20 Oak 0.62 1.52 Oak 0.99

Wet Red Clay 1.37 0.87 Silicon 0.26 1.23 Gypsum 0.64 2.92 Fallow 0.85

Gypsum sand 0.52 0.87 Gypsum 1.0 0.09 Gypsum 1.0 0.04 Gypsum 1.0

Silicon sand 1.01 0.93 Silicon 1.0 0.16 Silicon 1.0 0.35 Silicon 1.0

Multi-mineral 0.94 4.39 Silicon 0.93 0.18 M. mineral 0.58 0.11 M. mineral 0.62

Whitley soil 0.75 4.48 0.04 Whitley 0.96 0.03 Whitley 0.99

Water 1.27 2.78 Silicon 0.5 0.84 Basalt 1.0 5.34 Water 1.0

Global 0.78 3.44 0.43 0.17 0.91 0.07 0.96

Table A.6: Performance assessment of the identification process for 0z = 45 ° and V = 5km.
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V = 5km

Identified

Category e mainly as F Fm e

Barley 0.41 Oats 0.78 1.0 0.21 Barley

Powell 0.09 Oats

Beans 0.43 Elm 0.39 0.99 0.22 Beans

Oats 0.37 Oats

Oats 0.25 Oats 1.0 0.0 0.13 Oats

V = 10km V = 15km V = 23km

Identified Identified Identified

mainly as F Fm e mainly as F Fm e mainly as F Fm

0.65 0.35 0.16 Barley 0.76 0.24 0.13 Barley 0.78 0.22

0.21 Oats 0.13 Oats 0.13

0.62 0.38 0.17 Beans 0.72 0.28 0.14 Beans 0.77 0.23

0.15 Elm 0.11 Elm 0.11

1.0 0.0 0.11 Oats 1.0 0.0 0.10 Oats 1.0 0.0

Wheat 0.47 Wheat 0.66 0.34 0.26 Wheat 0.79 0.21 0.21 Wheat

D. sand 0.15 D. sand 0.15 D. sand

Silver Maple 0.33 Maple 0.86 0.14 0.20 Maple 0.94 0.06 0.17 Maple

D. sand 0.06 D. sand 0.03 D. sand

Burr Oak 0.68 D R clay 0.58 1.0 0.37 D R clay 0.78 1.0 0.29 Oak

0.84 0.16 0.18 Wheat 0.90 0.10

0.11 D. sand 0.06

0.97 0.03 0.16 Maple 1.0 0.0

0.01

0.21 0.79 0.24 Oak 0.69 0.31

D. sand 0.30 Sycamore 0.17 Sycamore 0.57 Sycamore 0.21

Gypsum sand 0.60 Gypsum 0.99 0.01 0.34 Gypsum 1.0 0.0 0.27 Gypsum 1.0 0.0 0.24 Gypsum 1.0 0.0

Silicon 0.004

Silicon sand 0.91 Silicon 1.0 0.0 0.51 Silicon 1.0 0.0 0.41 Silicon 1.0 0.0 0.35 Silicon 0.0 0.0

Multi-mineral 0.77 W. sand 0.58 1.0 0.36 M. Min 0.44 0.56 0.25 M. Min 0.51 0.49 0.18 M. Min 0.56 0.44

Basalt 0.22 W. sand 0.28 W. sand 0.29 W. sand 0.31

Whitley soil 0.25 Whitley 0.86 0.14 0.13 Whitley 0.96 0.04 0.10 Whitley 0.98 0.02 0.09 Whitley 1.0 0.0

Oats 0.07 Oats 0.03 Oats 0.01

Global 0.71 0.36 0.36 0.16 0.27 0.11 0.22 0.09

Table A.7: Performance assessment of Bowker's recovery for 0z = 0 °.
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V = 5km

Identified

Category e mainly as F Fm e

Barley 0.42 Oats 0.78 1.0 0.21 Barley

Powell 0.09 Oats

Beans 0.43 Elm 0.54 1.0 0.22 Beans

Oats 0.23 Oats

Oats 0.26 Oats 0.98 0.02 0.13 Oats

Elm 0.02

Wheat 0.47 Wheat 0.64 0.35 0.26 Wheat

D. sand 0.15 D. sand

Silver Maple 0.34 Maple 0.87 0.13 0.20 Maple

D. sand 0.06 D. sand

Burr Oak 0.67 D R clay 0.61 1.0

V = 10km V = 15km V = 23km

Identified Identified Identified

mainly as F Fm e mainly as F Fm e mainly as F Fm

0.60 0.39 0.16 Barley 0.76 0.24 0.13 Barley 0.78 0.21

0.25 Oats 0.13 Oats 0.14

0.61 0.39 0.17 Beans 0.72 0.28 0.14 Beans 0.77 0.22

0.15 Elm 0.11 Elm 0.11

1.0 0.0 0.11 Oats 1.0 0.0 0.10 Oats 1.0 0.0

0.79 0.21 0.21 Wheat

0.15 D. sand

0.94 0.06 0.17 Maple

0.03 D. sand

0.27 D 1R clay 0.76 0.99 0.29 Oak

0.85 0.15 0.18 Wheat 0.90 0.10

0.11 D. sand 0.05

0.97 0.02 0.16 Maple 1.0 0.0

0.01

0.22 0.78 0.24 Oak 0.67 0.31

D. sand 0.29 Sycamore 0.19 Sycamore 0.55 Sycamore 0.22

Gypsum sand 0.60 Gypsum 0.99 0.005 0.34 Gypsum 1.0 0.0 0.27 Gypsum 1.0 0.0 0.24 Gypsum 1.0 0.0

Silicon 0.004

Silicon sand 0.90 Silicon 1.0 0.0 0.51 Silicon 1.0 0.0 0.41 Silicon 1.0 0.0 0.35 Silicon 1.0 0.0

Multi-mineral 0.76 W. sand 0.58 1.0 0.36 M. Min 0.43 0.57 0.25 M. Min 0.51 0.49 0.18 M. Min 0.56 0.43

Basalt 0.23 W. sand 0.29 W. sand 0.29 W. sand 0.32

Whitley soil 0.27 Whitley 0.85 0.15 0.13 Whitley 0.96 0.04 0.10 Whitley 0.98 0.02 0.09 Whitley 1.0 0.0

Basalt 0.06 Oats 0.03 Oats 0.01

Global 0.70 0.36 0.36 0.16 0.27 0.11 0.22 0.09

Table A.8: Performance assessment of Bowker's recovery for 0z = 30 °.
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Category
Barley

Beans

V = 10km V = 15km V = 23km

Identified Identified Identified

C [Pm e mainly as /L_ [Pm e mainly as /L_ [Pm e mainly as /L_ [Pm

0.44 Oats 0.74 1.0 0.22 Barley 0.42 0.58 0.16 Barley 0.74 0.26 0.13 Barley 0.78 0.22

Powell 0.14 Oats 0.43 Oats 0.15 Oats 0.14

0.45 Elm 0.74 1.0 0.22 Beans 0.43 0.43 0.17 Beans 0.72 0.28 0.14 Beans 0.77 0.23

Gypsum 0.09 Oats 0.19 Elm 0.11 Elm 0.11

Oats 0.30 Oats 0.72 0.28 0.15 Oats 1.0 0.0 0.11 Oats 1.0 0.0 0.10 Oats 1.0 0.0

Elm 0.26

Wheat 0.49 Wheat 0.56 0.44 0.26 Wheat 0.79 0.21 0.21 Wheat 0.85 0.15 0.18 Wheat 0.90 0.10

D. sand 0.17 D. sand 0.15 D. sand 0.10 D. sand 0.05

Silver Maple 0.37 Maple 0.80 0.20 0.21 Maple 0.95 0.05 0.17 Maple 0.98 0.02 0.16 Maple 1.0 0.0

Elm 0.09 D. sand 0.03 D. sand 0.01

Burr Oak 0.65 D R clay 0.62 1.0 0.36 D R clay 0.75 1.0 0.28 Oak 0.22 0.78 0.24 Oak 0.69 0.31

V = 5km

Identified

mainly as F

D. sand 0.26 Sycamore 0.21 Sycamore 0.56 Sycamore 0.11

Gypsum sand 0.62 Gypsum 0.99 0.0 0.34 Gypsum 1.0 0.0 0.28 Gypsum 1.0 0.0 0.24 Gypsum 1.0 0.0

Silicon 0.004

Silicon sand 0.90 Silicon 1.0 0.0 0.51 Silicon 1.0 0.0 0.41 Silicon 1.0 0.0 0.35 Silicon 1.0 0.0

Multi-mineral 0.75 W. sand 0.58 1.0 0.36 M. Min 0.42 0.58 0.25 M. Min 0.50 0.50 0.18 M. Min 0.56 0.44

Basalt 0.24 W. sand 0.08 W. sand 0.30 W. sand 0.32

Whitley soil 0.30 Whitley 0.61 0.39 0.14 Whitley 0.96 0.04 0.11 Whitley 0.98 0.02 0.09 Whitley 1.0 0.0

Basalt 0.34 Oats 0.03 Oats 0.01

Global 0.69 0.41 0.35 0.18 0.27 0.12 0.22 0.09

Table A.9: Performance assessment of Bowker's recovery for 0z = 45 °.
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Category

Barley

Beans

Oats

Wheat

Silver Maple

Burr Oak

Gypsum sand

Silicon sand

V = 5km V = 10km V = 15km V = 23km

Identified Identified Identified Identified

e mainly as/[P [Pm e mainly as/[P [Pm e mainly as/[P [Pm -_ mainly as/[P [Pm

0.25 Oats D.81 0.92 0.13 Barley 3.92 0.08 0.11 Barley 3.87 0.13 D.09 Barley 0.78 0.21

Powell D.10 Oats 3.25 Oats 3.12 Oats 0.08

0.26 Elm D.53 0.96 0.14 Beans 3.82 0.18 0.11 Beans 3.90 0.1G D.10 Beans 0.99 0.22

Oats D.35 Oats 3.13 Oats 3.10 Oats 0.006

0.21 Oats 1.0 0.0 0.11 Oats 1.0 0.0 0.09 Oats 1.0 0.0 D.08Oats 1.0 0.0

0.29 Wheat D.86 0.14 0.18 Wheat 1.0 0.0 0.16 Wheat 1.0 0.0 D.15 Wheat 1.0 0.0

D 1R clay D.9

0.28 Maple D.98 0.02 0.18 Maple 1.0 0.0 0.16 Maple 1.0 0.0 D.14 Maple 1.0 0.0

D. sand D.01

0.33 D 1R clay D.74 0.93 0.23 Oak 3.94 0.06 0.21Oak 1.0 0.0 D.20 Oak 0.67 0.31

Sycamore 0.17 Sycamore 0.05

0.44 Gypsum 1.0 0.0 0.27 Gypsum 1.0 0.0 0.23 Gypsum 1.0 0.0 D.21Gypsum 1.0 0.0

0.54 Silicon 1.0 0.0 0.36 Silicon 1.0 0.0 0.32 Silicon 1.0 0.0 D.29 Silicon 1.0 0.0

Multi-mineral 0.29 W. sand D.72 0.92 0.15 M. Min 3.57 0.42 0.12 M. Min 3.63 0.37 D.09 M. Min 0.67 0.33

Basalt D.23 W. sand 3.41 W. sand 3.36 W. sand 0.33

Whitley soil 0.24Whitley D.970.03 0.12 Whitley 1.0 0.0 0.09Whitley 1.0 0.0 D.08Whitley 1.0 0.0

Oats D.02

Global 0.36 0.30 0.22 0.07 0.19 0.04 D.17 0.02

Table A.10: Performance assessment of the identification process after Richter recovery for 0z = 30 °.

the entire cube, and the global fraction of misidentified pixels. This stochastic assessment shows that the

main weakness of the Bowker recovery technique is the necessity to have an accurate knowledge of the path

radiance. With that knowledge, this technique is as robust to perturbations as is the Richter technique. It

also demonstrates that the identification process improves with improved visibility conditions.

A.3 Richter Reflectance Recovery Summary

Table A.10 summarizes the quantitative performance of Richter's recovery technique for a stochastic

spatio-spectral end-to-end radiance measurement simulation. The atmospheric acquisition conditions are

0z = 30 °, and V = 5kin, 10kin, 15kin, and 23kin. Adjacency effects are simulated by 10% perturbation of
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the path radianceLv, and a spatial spread factor of s = 3. Additional stochastic perturbation includes a

10% uncertainty in the reflectance signature, irradiance perturbations of 10%, and a random sensor noise

rz_i of 5% of the received radiance signal. This table summarizes the rinse of the recovery process for

each reflectance area in the hyper-spectral polygon, and lists the two main identified reflectances for each

category in the cube, together with their local fraction F and the global misidentification fraction E_. The

table excludes the assessment of water, fallow fields, wet red clay and potatoes, all of which have fewer

than 100 pixels in the hyper spectral cube, and therefore their stochastic assessment is meaningless.

Tables A.11 A.13 summarize the identification process for incorrect assumptions about the visibility

conditions during acquisition time. The simulation parameters include 0z = 30 °, 10% perturbation of

p(x, y, A), 10% perturbation of t3, 10% perturbation of Lv(x , y, A), a spatial spread factor of s = 3, and

a random sensor noise rz_i of 5% of the received radiance signal. Camera parameters include an optical

index of cr_(Ai) = 0.6 and an electronic noise with a SNR of 64 across the spectral bands.
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Category

Barley

Beans

Oats

Wheat

Assumed V=5km

Identified Fm
mainly as FC

0.45 Gypsum 0.44 0.92 0.16 Barley 0.95 0.05 0.11 Barley

Powell 0.28 Powell 0.01 Oats

0.44 Potatoes 0.49 0.89 0.15 Beans 0.95 0.05 0.11 Beans

Gypsum 0.36 Soybeans 0.02 Oats

0.47 Potatoes 0.80 0.97 0.17 Barley 0.82 0.99 0.11 Oats

Basalt 0.06 Beans 0.10 Barley

0.44 Sycamore 0.45 0.74 0.17 Wheat 0.96 0.04 0.15 Wheat

Assumed V= 10km Assumed V= 15km Assumed V=23km

Identified /;'m Identified /;'m Identified /;'m
e mainly as F e mainly as F e mainly as F

0.84 0.16 0.14Oats 0.64 0.72

0.10 Barley 0.28

0.87 0.13 0.14Beans 0.62 0.38

0.07 Oats 0.31

0.89 0.11 0.12Oats 0.95 0.05

0.06 Powell 0.03

0.96 D.04 D.17Wheat 0.95 0.05

Tobacco 0.26 D. sand 0.02 D. sand 0.03 D. sand 0.04

Silver Maple 0.45 Oak 0.90 1.0 0.19 Maple 0.89 0.11 0.15 Maple 0.95 D.05 D.17 Maple 0.97 0.03

Elm 0.04 Sycamore 0.08 Wheat 0.04 Wheat 0.02

Burr Oak 0.51 Silicon 0.91 0.95 0.34 Oak 0.96 0.04 0.38 Oak 0.68 D.32 D.44 Sycamore 0.59 0.69

0.05 Sycamore 0.02 [Sycamore[ 0.30 Oak 0.31Oak

Gypsum sand 0.27 Gypsum 0.996 0.004 0.19 Gypsum 0.9970.003 0.18 Gypsum 0.997 D.003 D.19 Gypsum 0.997 0.003

D. sand 0.002 D. sand 0.002 D. sand 0.002 D. sand 0.002

Silicon sand 0.50 Silicon 0.998 0.002 0.32 Silicon 0.998 0.002 0.31 Silicon 0.996 D.004 D.34 Silicon 0.995 0.005

D. sand 0.002 D. sand 0.002 D. sand 0.004 D. sand 0.005

Multi-mineral 0.41Gypsum 0.52 0.78 0.15M. Min 0.82 0.16 0.14M. Min 0.60 D.40 D.19W. sand 0.52 0.61

M. Min 0.22 W. sand 0.10 W. sand 0.32 M. Min 0.39

Whitley soil 0.44Whitley 0.92 0.08 0.14 Whitley 0.92 0.08 0.08 Whitley 0.94 D.06 D.10Whitley 0.94 0.06

Oats 0.03 Barley 0.06 Oats 0.04 Oats 0.04

Global 0.41 0.41 0.22 0.05 0.21 D.07 D.23 0.17

Table A.11: The sensitivity of the Richter technique to incorrect visibility assumptions for actual visibility

of 15kin.
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True V = 5km True V = 10km True V = 15km True V = 23km

Identified /;'m Identified /;'m Identified /;'m Identified /;'m
Category c mainly as F c mainly as F c mainly as F e mainly as F

Barley 0.41Basalt 0.49 1.0 0.20 Oats 0.89 1.0 0.11 Barley 0.84 D.16 D.14 Barley 0.94 0.06

Powell 0.48 Powell 0.05 Oats 0.10 Powell 0.01

Beans 0.42 Elm 0.69 1.0 0.21 Oats 0.82 0.99 0.11 Beans 0.87 D.13 D.13 Beans 0.95 0.05

Powell 0.26 Elm 0.12 Oats 0.07 Powell 0.01

Oats 0.34 Basalt 0.77 1.0 0.17 Oats 0.95 0.05 0.11 Oats 0.89 D.11 D.15 Barley 0.80 0.92

Powell 0.20 Powell 0.03 Barley 0.06 Beans 0.08

Wheat 0.47 Powell 0.80 1.0 0.26 Wheat 0.95 0.05 0.15 Wheat 0.96 D.04 D.16 Wheat 0.96 0.04

D. sand 0.19 D. sand 0.05 D. sand 0.03 D. sand 0.02

Silver Maple 0.41Powell 0.72 0.82 0.24 Maple 0.98 0.02 0.15 Maple 0.95 D.05 D.17 Maple 0.90 0.10

Maple 0.18 Wheat 0.01 Wheat 0.04 Wheat 0.05

Burr Oak 0.82 D IR clay 0.70 1.0 0.54 Sycamore 0.69 1.0 0.38 Oak 0.68 D.32 D.34 Oak 0.95 0.05

0.21 Elm 0.13 [Sycamore[ 0.30 Sycamore 0.03Elm

Gypsum sand 0.39 Gypsum 0.998 0.002 0.30 Gypsum 0.9970.004 0.18 Gypsum 0.997 D.003 D.18 Gypsum 0.997 0.003

Silicon 0.001 D. sand 0.002 D. sand 0.002 D. sand 0.002

Silicon sand 0.69 Silicon 0.99 0.01 0.49 Silicon 0.995 0.005 0.31 Silicon 0.996 D.004 D.31 Silicon 0.998 0.002

D. sand 0.01 D. sand 0.005 D. sand 0.004 D. sand 0.002

Multi-mineral 0.52 W. sand 0.56 1.0 0.26 W. sand 0.84 0.97 0.14 M. Min 0.60 D.40 D.12 M. Min 0.87 0.13

Basalt 0.39 Basalt 0.10 W. sand 0.32 W. sand 0.06

Whitley soil 0.33 Basalt 0.97 1.0 0.14 Whitley 0.94 0.06 0.08 Whitley 0.94 D.06 D.11 Whitley 0.93 0.07

Powell 0.02 Oats 0.03 Oats 0.04 Barley 0.05

Global 0.45 0.59 0.30 0.31 0.21 D.07 D.21 0.04

Table A.12: The sensitivity of the Richter technique to an incorrect visibility assumption of 15kin.
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Category
Barley D.19Barley

Oats
Beans D.20Beans

Oats
Oats D.17Oats

Powell
Wheat D.27Wheat

TrueV = 5km True V = 10km True V = 15km True V = 23km

Identified /rPm Identified /rPm Identified /rPm Identified /rPm
mainly as F e mainly as F e mainly as F e mainly as F

0.80 0.20 0.36Oats 0.73 0.82 0.50Gypsum 0.49 0.99 0.61Gypsum D.89 D.99

0.09 Barley 0.18 Powell 0.31 9ilicon D.05

0.67 0.23 0.35 Potatoes 0.64 0.69 0.49 Gypsum 054. 0.99 0.61 Gypsum D.90 D.99

0.09 Beans 0.31 Potatoes 0.39 9ilicon D.05

0.84 0.16 0.36 Beans 0.77 0.94 0.46 Potatoes 0.75 0.93 0.54 Potatoes D.70 D.99

0.20 Barley 0.12 Oats 0.07 Gypsum D.23

0.91 0.09 0.37 Tobacco 0.85 0.92 0.50 Sycamore 0.42 0.59 0.61 Wheat D.76 D.24

D IR clay 0.05 Wheat 0.08 Wheat 0.41 9ilicon D.16

Silver Maple D.26 Maple 0.94 0.06 0.38 Sycamore 0.68 0.99 0.47 Oak 0.85 0.99 0.54 Oak D.79 D.98

Wheat 0.05 Oak 0.27 Sycamore 0.06 Elm D.08

Burr Oak D.53 Sycamore 0.48 0.56 0.50 Silicon 0.60 0.73 0.62 Silicon 0.98 0.99 0.76 Silicon D.99 1.0

Oak 0.44 Oak 0.27 Elm 0.01 Wheat D.005

Gypsum sand 0.34 Gypsum 0.997 0.003 0.31 Gypsum 0.997 0.003 0.34 Gypsum 0.993 0.007 0.39 Gypsum D.94 D.06

D. sand 0.002 D. sand 0.002 Silicon 0.004 _ilicon D.06

Silicon sand D.54 Silicon 0.993 0.007 0.53 Silicon 0.997 0.003 0.61 Silicon 0.999 0.001 0.73 Silicon 1.0 D.0

D. sand 0.007 D. sand 0.003 D. sand 0.001

Multi-mineral D.24M. Min 0.53 0.47 0.31Basalt 0.44 0.61 0.48Gypsum 0.71 0.97 0.62Gypsum D.79 D.98

W. sand 0.28 M. Min 0.39 Basalt 0.21 _ilicon D.12

Whitley soil D.14 Whitley 0.91 0.09 0.34 W IR clay 0.95 0.98 0.44 Whitley 0.90 0.10 0.52 Basalt D.71 D.78

Oats 0.06 Whitley 0.02 W. sand 0.04 Whitley D.22

Global D.32 0.11 0.37 0.51 0.46 0.42 0.56 D.48

Table A.13: The sensitivity of the Richter technique to an incorrect visibility assumption of 5km.
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